AUSTRALIAN VETERINARY EMERGENCY PLAN

AUSVETPLAN

Enterprise Manual
Saleyards and transport
Version 3.0, 2013

AUSVETPLAN is a series of technical response plans that describe the proposed Australian approach to an emergency animal disease incident. The documents provide guidance based on sound analysis, linking policy, strategies, implementation, coordination and emergency-management plans.

Standing Council on Primary Industries
This enterprise manual forms part of:

AUSVETPLAN Edition 3

This strategy will be reviewed regularly. Suggestions and recommendations for amendments should be forwarded to:
AUSVETPLAN — Animal Health Australia
Executive Manager, Emergency Preparedness and Response
Suite 15, 26–28 Napier Close
Deakin ACT 2600
Tel: 02 6232 5522; Fax: 02 6232 5511
email: admin@animalhealthaustralia.com.au

Publication record:
Edition 1: 1991
Edition 2:
 Version 2.0, 1996 (interim document)
 Version 2.1, 1999 (final document)
Edition 3:
 Version 3.0, 2013 (major update and inclusion of new cost-sharing arrangements)

AUSVETPLAN is available on the internet at:
www.animalhealthaustralia.com.au

© Commonwealth of Australia and each of its states and territories, 2013
ISBN 0 642 24506 1 (printed version)
ISBN 1 876 71438 7 (electronic version)

This work is copyright and, apart from any use as permitted under the Copyright Act 1968, no part may be reproduced without written permission from the publishers, the Australian Government Department of Agriculture, Fisheries and Forestry, and Animal Health Australia, acting on behalf of the Standing Council on Primary Industries. Requests and inquiries concerning reproduction and rights should be addressed to AUSVETPLAN — Animal Health Australia (see above).

The publishers give no warranty that the information contained in AUSVETPLAN is correct or complete and shall not be liable for any loss howsoever caused, whether due to negligence or other circumstances, arising from use of or reliance on this code.

IMPORTANT NOTE: Important regulatory information about emergency animal diseases is contained in the OIE Terrestrial Animal Health Code, which is updated annually and is available on the internet at the OIE website:
www.oie.int/international-standard-setting/terrestrial-code/access-online/

DISEASE WATCH HOTLINE
1800 675 888

The Disease Watch Hotline is a toll-free telephone number that connects callers to the relevant state or territory officer to report concerns about any potential emergency disease situation. Anyone suspecting an emergency disease outbreak should use this number to get immediate advice and assistance.
Preface

This enterprise manual for saleyards and transport is part of the Australian Veterinary Emergency Plan or AUSVETPLAN (Edition 3). AUSVETPLAN is a coordinated national response plan for the management and, wherever possible, eradication of exotic disease incursions and outbreaks of certain emerging or endemic animal diseases. The term emergency animal disease (EAD) is used to collectively describe these disease categories.

Enterprise manuals, a component of AUSVETPLAN, are prepared for animal industries in which the risk of harm from an EAD is expected to be higher than normal. For example, the way in which stock are managed could result in a higher likelihood of rapid spread of a disease agent, and thus impact on the response to an outbreak (known as an EAD response) and its associated costs.

Enterprise manuals address the risks associated with so-called risk enterprises. These are defined as livestock or related enterprises that are a potential source of major infection for many other premises, and can thus increase the potential size of an outbreak and affect its nature.

This manual provides information and guidance to all people associated with the operations of saleyards and associated transport of livestock. It can be used in any of three situations: when a saleyard is in the vicinity of an outbreak of an EAD (for example, in a declared restricted or control area for the disease); when an EAD is detected in an animal within a saleyard; or when a livestock standstill is implemented.

The manual provides procedures and recommendations for dealing with these situations, and background information on how saleyards operate. Recommendations have been made to reduce the risk or effects that an EAD incident would have on the industry. The manual focuses on highly contagious EADs that would cause the greatest disruption to the industry.

The manual is written for three major target groups:

- decision makers at the state/territory or national level who are unfamiliar with saleyard operations — the manual provides an overview of saleyard operations and guidance in policy and procedures
- saleyard management and staff who need specific instructions or information on how to perform the operational tasks to exclude or eradicate the disease
- livestock transport operators involved in an EAD incident.

Detailed instructions for the field implementation of AUSVETPLAN are contained in the disease strategies, operational procedures manuals, management manuals and wild animal manual. Industry-specific information is given in the relevant
enterprise manuals. The full list of AUSVETPLAN manuals that may need to be accessed in an emergency is shown below.

AUSVETPLAN manuals

Disease strategies
- Individual strategies for most of the diseases listed in the EADRA
- Bee diseases and pests
- Response policy briefs (for diseases not covered by individual manuals)

Enterprise manuals
- Artificial breeding centres
- Feedlots
- Meat processing
- Saleyards and transport
- Pig industry
- Poultry industry
- Zoos

Operational procedures manuals
- Decontamination
- Destruction of animals
- Disposal
- Livestock welfare and management
- Public relations
- Valuation and compensation

Management manuals
- Control centres management
 (Parts 1 and 2)
- Laboratory preparedness

Wild animal response strategy

Summary document

Nationally agreed standard operating procedures

Nationally agreed standard operating procedures have been developed for use by jurisdictions during responses to emergency animal disease incidents and emergencies. These procedures underpin elements of AUSVETPLAN and describe in detail specific actions undertaken during a response to an incident.

Please refer to the following relevant NASOPs for further information:
- NASOP 1: Personal decontamination — entry and exit procedures
- NASOP 10: Stop and search of vehicles at checkpoints
- NASOP 12: Decontamination of large equipment
- NASOP 19: Manage security of a saleyard during a livestock standstill
- NASOP 26: Decontamination of groups of people — entry and exit procedures.

Contents

Preface... 3

1 Disease management and emergency animal disease preparedness 8
 1.1 Australia’s animal health services .. 8
 1.2 Principles of emergency animal disease management 8
 1.3 Emergency Animal Disease Response Agreement ... 9
 1.4 AUSVETPLAN .. 10
 1.5 Controlling a major disease outbreak ... 12
 1.5.1 Livestock movement restrictions .. 13
 1.5.2 National livestock standstill .. 13
 1.5.3 Declared areas ... 14
 1.5.4 Compartmentalisation .. 16
 1.6 Training in emergency animal disease preparedness 18

2 Nature of the enterprise ... 19
 2.1 Description of the enterprise .. 19
 2.1.1 Legislation relevant to saleyards and transport 21
 2.1.2 Animal welfare .. 21
 2.2 Emergency diseases of concern .. 23
 2.3 Occupational health and safety .. 27
 2.4 AUSVETPLAN and international standards .. 28
 2.5 Animal species and/or product entering saleyards 31
 2.6 Outputs — risk of disease spread from saleyards 31
 2.6.1 Factors to consider in assessing risk of disease spread............... 32
 2.6.2 Risk of spread of specific diseases ... 33

3 Risk reduction and contingency planning .. 38
 3.1 Internal quarantine ... 38
 3.2 Veterinary services and training of staff .. 38
 3.3 Collection and dispatch of laboratory specimens .. 39
 3.4 Disposal methods .. 39
 3.5 Record keeping ... 39
 3.6 Water supply .. 39
4 Response plans in a declared area.................................41

4.1 Introduction...41
4.1.1 Declared areas ...41
4.1.2 Local control centre..41

4.2 Continued operation of an enterprise in a declared area........42
4.2.1 Restricted area ...42
4.2.2 Control area ...42

4.3 Minimising operational risks ..43
4.3.1 Livestock movements...43
4.3.2 Work animals...44
4.3.3 Stockfeed ..44
4.3.4 Discharges ..44
4.3.5 Vehicles ...44
4.3.6 Equipment and materials ..44
4.3.7 Personnel ..45
4.3.8 Vermin and feral animals ...45
4.3.9 Building and structures ...45

4.4 Other precautions ...45
4.4.1 Entry of infected animals or contaminated products to saleyards.................45
4.4.2 Saleyard implicated in the spread of infection after a sale is completed........45

5 Response plans in an infected or dangerous contact premises46

5.1 Introduction...46
5.1.1 Premises classifications ..46
5.1.2 Priorities when investigating an infected or dangerous contact premises........47
5.1.3 Handling animals and animal products47

5.2 Continued operation of an enterprise classified as an infected or dangerous contact premises ..48
5.2.1 Deciding whether to suspend or stop a sale48
5.2.2 Issues to consider if a sale is to be stopped.........................48

5.3 Elimination of the disease agent...48
5.3.1 Animals ..48
5.3.2 Manure and effluent ..49
5.3.3 Stockfeed ...49

5.4 Salvaging animals for slaughter ..49

5.5 Decontamination...51
5.5.1 Livestock ...51
5.5.2 Stockfeed ...51
5.5.3 Discharges ...52
5.5.4 Vehicles ...52
5.5.5 Equipment and materials ...53
5.5.6 Personnel .. 53
5.5.7 Vermin and feral animals... 54
5.5.8 Buildings and structures .. 54

5.6 Other considerations .. 55

5.7 Tracing requirements .. 55

5.8 Proof of freedom ... 56

5.9 Media and public relations .. 56

6 Transport .. 57

6.1 Nature of the disease ... 57

6.2 Declaration of infected, dangerous contact and suspect premises, and restricted and control areas ... 57

6.3 Animal movements ... 57

6.4 Hygiene .. 58

6.5 Records ... 58

6.6 Cooperation .. 58

6.7 Recognition of disease and early reporting ... 58

6.8 Action when disease is suspected ... 58

Appendix 1 Diseases covered by the Emergency Animal Disease Response Agreement ... 60

Appendix 2 Holding of livestock .. 62

Appendix 3 Valuation and ownership of stock at saleyard 64

Appendix 4 Guidelines for staff when an EAD is suspected in a saleyard .. 65

Appendix 5 Preparation before an EAD incident 68

Appendix 6 Example of Saleyard Action Plan for a National Livestock Standstill ... 70

Glossary ... 82

Abbreviations ... 90

References ... 92
1 Disease management and emergency animal disease preparedness

1.1 Australia’s animal health services

In Australia, each state and territory has operational responsibility for the control and eradication of animal diseases within its borders. Animal health authorities administer legislation relating to responses to emergency animal diseases (EADs), including movement controls, treatment, slaughter, disposal, decontamination and compensation. Inspectors have wide powers, including the ability to enter premises, examine records, order livestock musters, control livestock movements, request that animals or products be submitted for testing, and isolate and destroy diseased or suspected diseased livestock. The Australian Government advises on, and coordinates, national animal health policy, and is responsible for quarantine and international animal health matters (including export certification and trade negotiations), and disease reporting to the World Organisation for Animal Health (OIE).

1.2 Principles of emergency animal disease management

In Australia, the traditional role of governments (Australian, and states and territories) in managing animal health is complemented by a close association with the livestock industries. National animal health priorities are determined in consultation with these industries, which participate in policy development, support targeted activities and contribute to emergency responses.

As part of their preparedness arrangements, state and territory animal health authorities develop operational plans for managing EADs that are consistent with AUSVETPLAN and their own legislative framework. These plans are made in conjunction with the state or territory emergency management organisation and support agencies, and contain considerable detail on the various procedures described in this manual.

EAD responses are planned and implemented at three levels — national, state or territory, and local. In the event of an EAD outbreak, relevant state or territory animal health officials manage all aspects of its control and eradication according to a nationally agreed plan. They work with livestock industry liaison officers (ILOs), and the owners and managers of premises within declared areas to resolve the outbreak and return enterprises to normal operations.

The chief veterinary officer (CVO) of the state or territory in which an EAD outbreak occurs is responsible for implementing the endorsed disease control measures. The CVO works with the Consultative Committee on Emergency Animal Diseases (CCEAD), which provides the link between the Australian Government, the state and territory governments, and the relevant livestock industry(ies) for technical and veterinary decision making during EAD outbreaks.

The CCEAD advises a high-level national management group (NMG) on response policy. The NMG determines whether an agreement to share the costs of an EAD response between Australia’s governments and the relevant livestock industry(ies) should be invoked. The
NMG manages national policy and resourcing of the EAD response. Both the CCEAD and the NMG base their decisions on current information provided by the affected state or territory, and on guidance provided in AUSVETPLAN.

1.3 Emergency Animal Disease Response Agreement

The EAD Response Agreement (EADRA)³ provides a framework for the Australian Government, the state and territory governments, and the major livestock industries to manage EAD outbreaks cooperatively. It describes the funding of eligible EAD responses, and the sharing of the costs between government and the affected livestock industries.

Four categories of diseases are used to determine the liability for costs. These categories have been developed according to the benefits of controlling the disease, as assessed by the likely impact of the specific EAD on human health, socioeconomics, the environment and livestock production. An EAD response is initially funded by the affected state or territory, with refunds made by the Australian Government on behalf of all funding parties according to an agreed formula for the particular disease, as described in the EADRA. The NMG makes decisions about activation and use of cost-sharing arrangements during an EAD response.

The EADRA also contains many other important instructions that provide the basis for a coordinated national EAD response. In particular, it refers to using existing plans, such as AUSVETPLAN; sets standards for accounting, auditing and training personnel; and provides the incentive for developing and maintaining government and industry biosecurity measures.

Table 1.1 describes the four disease categories and their respective shared-cost arrangements for a sample of emergency animal diseases.

³ The full title of the agreement is the Government and Livestock Industry Cost Sharing Deed in Respect of Emergency Animal Disease Responses. For more information, see www.animalhealthaustralia.com.au/programs/emergency-animal-disease-preparedness/ead-response-agreement
Table 1.1 Disease categories and shared-cost arrangements

<table>
<thead>
<tr>
<th>Category</th>
<th>Examples of emergency animal diseases</th>
<th>Shared-cost arrangement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Japanese encephalitis, Rabies</td>
<td>100% government</td>
</tr>
<tr>
<td>2</td>
<td>Foot-and-mouth disease, Vesicular stomatitis</td>
<td>80% government, 20% relevant industries</td>
</tr>
<tr>
<td>3</td>
<td>African horse sickness, Classical swine fever, Trichinellosis</td>
<td>50% government, 50% relevant industries</td>
</tr>
<tr>
<td>4</td>
<td>Equine influenza, Porcine reproductive and respiratory syndrome</td>
<td>20% government, 80% relevant industries</td>
</tr>
</tbody>
</table>

1.4 AUSVETPLAN

AUSVETPLAN is the national contingency planning framework for the management of EAD incidents in Australia. The plan ensures coherent operations and procedures in the management of an EAD incident among national, state and territory animal health authorities and emergency management organisations.

Animal Health Australia, the custodian of AUSVETPLAN, works closely with Australian, state and territory governments, and livestock industries to determine priorities and regularly review AUSVETPLAN to ensure that it is current and appropriate. Finalised manuals that deal with response policy are endorsed by governments.

Everyone involved in the EAD preparedness of saleyards should understand the nature and structure of AUSVETPLAN. Enterprise manuals do not stand alone and must be read in association with other AUSVETPLAN documents.4

Readers should also be aware of:

- nationally agreed standard operating procedures (NASOPs)5 that have been developed for use by jurisdictions during responses to EAD incidents and emergencies
- standard operating procedures that are prepared by the appropriate jurisdiction and support AUSVETPLAN
- plans involving other areas of state and territory emergency management arrangements (e.g. police, local government)
- diagnostic resources
- training materials.

A series of individual AUSVETPLAN manuals covers all the elements of EAD preparedness and management:

- **Summary Document.** This describes the components of AUSVETPLAN and outlines their functional relationships.

• **Disease strategies.** These are authoritative references to the Australian control and eradication policies for most of the diseases listed in the EADRA. They provide information about the nature of the disease; the principles of its control and eradication; and control policies, strategies and recommendations. Sufficient information is included to allow authorities to make informed decisions about controlling an EAD outbreak.

• **Response policy briefs.** These provide brief information on the other EADs that are subject to cost sharing, but are not covered by full disease strategies as they have a low likelihood of entry into Australia, and any consequences are likely to be less severe.

• **Operational manuals.** These describe in detail the recommended procedures for different aspects of an EAD response, such as animal destruction and disposal, decontamination of infected sites, and communication management.

• **Management manuals.** These provide detailed information on specific components of the response. For example, the **Control Centres Management Manual (Parts 1 and 2)** provides details of the management structure, and roles and responsibilities at the national, state or territory, and local levels. The other management manual is the manual for **Laboratory Preparedness.**

• **Enterprise manuals.** These cover specific risk enterprises — such as abattoirs, artificial breeding centres, beef-cattle feedlots and piggeries — that pose special economic or disease eradication problems, or are important in the epidemiology or impact of the disease. They provide information and guidance to two target groups:

 - government personnel involved in EAD preparedness who may be unfamiliar with the operations of the industry of which the enterprise is part

 - industry personnel and veterinarians who need information on strategies that may be adopted to improve preparedness, and guidance on the operational procedures that may be applied to exclude, contain or eradicate an EAD.

• **Wild animal response strategy.** This sets out the management strategies and overall control procedures relating to wild animals during an EAD outbreak.

This complex web of plans is illustrated in Figure 1.1.
1.5 Controlling a major disease outbreak

Control of an EAD outbreak is a complex operation, requiring rapid mobilisation of resources and coordination of a diverse team of people. An EAD response may require input from all tiers of government and from a range of portfolios, as it may need to address not only animal health issues, but also financial, social, economic, human, trade and recovery issues.

The fundamental aim of national EAD control policy is to eradicate an EAD if this is reasonably feasible. Key factors taken into account relate to the disease and affected population. For example, the principal option used for many EADs is eradication by stamping out, where this is applicable to the EAD and is considered to be cost-effective. This could involve:

- quarantine of premises and/or movement controls
- valuation and compensation
- destruction and disposal of infected and exposed susceptible animals
- decontamination of infected premises
- surveillance of susceptible animals
- restriction of the activities of certain enterprises
- an industry and public awareness program.

Other measures that may be used, where necessary, include:

- vaccination
- vector or wild animal control
- treatment of affected animals
- use of sentinel animals.
In some circumstances, a modified stamping-out approach may be used, if it is possible to slaughter animals safely at an accredited abattoir to produce a marketable product.

Sometimes, eradication is not considered feasible because the incursion is already widespread at diagnosis or is considered likely to spread further despite the implementation of stamping out. In these cases, other control measures may be used, such as vaccination, with a view to possible containment and eventual eradication; or a state or territory and/or industry-based control program to manage a disease that is likely to become endemic in the population. Where the NMG has reason to believe that eradication is not possible and the disease can only be contained, or in a situation where the cost of an EAD response plan will exceed an agreed limit on funding, the NMG may decide to stop cost sharing.

All disease-control field activities have significant implications for saleyards. Factors that need to be taken into account in developing an appropriate response include the protection of valuable breeding stock and business continuity. Disease-control activities are managed from a local control centre (LCC), usually established in the vicinity of the outbreak. The LCC is responsible for all activities within the restricted area, including investigations of reports of disease outbreaks, consultation with livestock producers, specimen collection, property quarantine, valuation of livestock and property, livestock slaughter and disposal, and property decontamination.

Information on the structure, roles and responsibilities of the state or territory control centres (SCCs) and LCCs is contained in the Control Centres Management Manual, Part 1.

ILOs are trained and accredited to undertake prescribed AUSVETPLAN roles in both SCCs and LCCs. They are a point of contact for local producers and a source of advice to the LCC managers.

The response to an incursion of an EAD will be determined by its epidemiology, including:

- how early the incursion is detected
- the extent of the incursion
- the location of affected premises
- whether other species of livestock are affected
- the characteristics of the disease agent involved.

1.5.1 Livestock movement restrictions

Controlling the movement of livestock that are susceptible to a disease is an essential component of disease control. However, such regulatory controls can potentially affect saleyard operations, especially if they are maintained for an extended period.

1.5.2 National livestock standstill

For foot-and-mouth disease, a national standstill on the movement of all livestock may be declared by the state and territory authorities, with immediate effect from the time of strong suspicion or diagnosis. The standstill will apply for at least 3 days and possibly up to 7 days. This means that no susceptible stock may be moved from their current location, and those undergoing transport at the time of declaration will be required to stop moving as soon as possible. However, they may complete their journey if this is approved. Guidelines for managing livestock that are in transit to an abattoir or other location at the time of the declaration will be provided by the disease response authorities. A national standstill on livestock movement potentially reduces the spread of a disease and provides time for
animal health authorities to trace animals, carry out surveillance to determine the outbreak size and develop a management plan.

A national livestock standstill will have a significant impact on the operation of saleyards. All saleyards should prepare for such an eventuality by preparing a saleyard action plan. Appendix 6 provides guidance to saleyard operators about how to prepare for a national livestock standstill.

1.5.3 Declared areas

A national standstill is likely to be followed by the declaration of control areas (CAs) and restricted areas (RAs). These declared areas are geographic areas of land where the movement of livestock (and other materials) could be restricted for extended periods.

An RA is a relatively small area around an infected premises (IP) that is subject to the most intense surveillance and movement controls. The initial RA is generally based on a minimum 3-km radius around an IP, and is ‘drawn’ so that it contains all known IPs and dangerous contact premises (DCPs), and as many trace premises (TPs) and suspect premises (SPs) as practicable. Movement of live animals out of the RA is usually prohibited, while movement within and into it would only occur following the issue of an official permit by a government veterinarian or gazetted inspector of stock. Guidelines for establishing an RA are provided in the relevant Disease Strategy for the EAD. Multiple RAs may exist within one CA.

A CA forms a buffer between an RA and areas considered to be free from disease (outside area). Initially, a CA may be declared over the whole state or territory, but will usually be reduced in size as authorities learn more about the extent of the outbreak. It will generally maintain a minimum radius of 10 km, including the RA. Live susceptible animals and their products will be subject to movement controls.

As for RAs, animal movements out of a CA will usually be prohibited. Vehicles and specified products will only be allowed out of a CA into the outside area by official permit. The movement conditions will depend on the disease and will be determined by the lead agency. Information on these conditions will be provided through media outlets. Usually, permits will be made available for specific movements to continue where the risk is low.

Once the nature and distribution of a disease are understood, disease control zones may be established for longer term control of the disease agent and to assist in protecting Australia’s export trade. These zones will generally be based on the RAs and CAs.

Figure 1.2 illustrates how controls over the movement of livestock could affect access to declared areas; similar principles may apply to people and equipment.
It is important to recognise that the designation of declared areas can change during an EAD response, as authorities learn more about the nature and distribution of the disease. These changes create uncertainties that make forward planning for the resumption of livestock movements even more difficult.

Premises classifications in an EAD response are as follows:

- **Infected premises (IP)**: A defined area (which may be all or part of a property) in which an EAD meeting the case definition exists or is believed to exist, or in which the causative agent of that EAD exists or is believed to exist.

- **Dangerous contact premises (DCP)**: A premises that may or may not contain a susceptible animal(s), including those not showing clinical signs, but, following a risk assessment, is considered highly likely to contain an infected animal(s) or contaminated animal products, wastes or things, which present an unacceptable risk to the response if the risk is not addressed.

6 Refer to each AUSVETPLAN Disease Strategy for specific details of recommended movement controls.
- **Dangerous contact processing facility (DCPF):** An abattoir, knackery or milk processing facility (or other such facility) to which it appears highly likely that infected animals, or contaminated animal products, wastes or things have been introduced.

- **Suspect premises (SP):** A temporary classification of a premises that contains a susceptible animal(s) not known to have been exposed to the disease agent but showing clinical signs that require investigation.

- **Trace premises (TP):** A temporary classification of a premises that contains a susceptible animal(s) that tracing indicates may have been exposed to an infected animal(s), or contaminated animal products, wastes or things, and that requires investigation.

- **At-risk premises (ARP):** A premises in an RA that contains a susceptible animal(s), but is not considered at the time of designation to be an SP, DCP, DCPF, IP or TP.

- **Premises of relevance (POR):** A premises in a CA that contains a susceptible animal(s) but is considered at the time of designation not to be an IP, DCP, DCPF, SP or TP. The animal(s) on such premise(s) is/are subject to procedures applicable in the CA, such as heightened surveillance and movement restrictions.

- **Resolved premises (RP):** An IP that has completed the required control measures and is subject to the procedures and restrictions appropriate to the area in which it is located.

- **Unknown status premises (UP):** A premises that has been identified as having an unknown animal status.

- **Zero susceptible stock premises (ZP):** A premises that contains no susceptible animals.

- **Assessed negative (AN):** A qualifier that may be applied to a premises previously defined as a DCP, SP, TP or ARP that has been cleared of suspicion at the time of designation. The animals on such a premises are subject to the procedures (such as heightened surveillance) and movement restrictions appropriate to the declared area in which the premises is located. (Note: AN is a qualifier to document progress in the response and in the proof-of-freedom phase and, as a qualifier, is not to be used at the same level as the other premises classifications.)

Although these designations seem complex, it is important to understand that a property may fit into only one classification at any given time. In addition, not all of these classifications may be needed in a particular EAD response. Based on the disease risk, the highest priorities for investigation by the disease control authority are IPs, DCPs, SPs and TPs.

On an IP, SP, DCP or TP, quarantine and movement controls will apply. On an SP or TP, other disease control actions will follow only if the premises is reclassified as an IP. On an IP, live animals might be destroyed as part of a stamping-out strategy, or other disease control actions may be compulsorily applied by the authorities.

Classification of properties according to the above criteria is an important part of EAD control and eradication. Any restrictions that apply to a classified property will be fully explained by the animal health authority at the time of classification.

1.5.4 Compartmentalisation

In some cases, the costs resulting from slaughter and destruction of livestock and their byproducts can be limited by partitioning within enterprises, provided that disease control is not compromised. Many premises already use isolation between sections and clear operational divisions (separate services, staff and equipment) for endemic disease control, or for technical or commercial reasons.
This concept, involving the use of ‘compartments’, means that a subpopulation of animals is defined according to:

- management and husbandry practices
- an effective biosecurity system
- a high capability for tracing animals and byproducts through the market chain.

Compartments may be defined before a disease outbreak to mitigate the impact of diverse geographical locations, and to make disease control and continuing trade easier. Compartmentalisation can be effective only if it is part of a national disease control strategy using surveillance and monitoring, stamping-out strategies, on-farm biosecurity and protection of the compartment from the incursion of disease agents.

Under compartmentalisation, if an EAD breaks out in a sector of an industry, disease control efforts could be focused on that compartment rather than a geographic zone, thus increasing the efficiency of the response. For example, large-scale intensive livestock premises (such as piggeries) with high-quality biosecurity practices that are not affected by the disease may be able to continue production, and exports could continue (subject to the agreement of trading partners).

However, the recognition of compartments is not an overarching international agreement, but is an outcome from an existing bilateral agreement between the veterinary services of the countries concerned. Such agreements between trading partners take time to be developed, considered and finalised due to the detailed information, costing and resourcing, and national frameworks that would be required to support this approach. An importing country will want to be satisfied that its animal health status will not be compromised if it allows imports from a compartment in an exporting country. The importing country will take into account an evaluation of the exporting country’s veterinary services, the outcomes of a risk assessment, its own legislation and status with respect to the EAD concerned, and other relevant OIE standards. There is a risk that an importing country may select the compartments it will accept imports from and potentially restrict imports to directly benefit its own livestock industry. Alternatively, the country may not accept such proposals at all. The practical implementation of compartmentalisation by countries is still developing, and some degree of evolution of the concept should be expected.

Responsibilities for implementing biosecurity measures for zones and compartments differ. Managing disease-free zones is a responsibility of veterinary authorities. For compartmentalisation, the private sector needs to take the lead role and work cooperatively with the veterinary services to develop appropriate arrangements. The veterinary authority will ultimately have responsibility for the outcome. The OIE recognises these responsibilities and, in the case of a livestock industry, states that:

Industry’s responsibilities include the application of biosecurity measures, documenting and recording movements of animals and personnel, quality assurance schemes, monitoring the efficacy of the measures, documenting corrective actions, conducting surveillance, rapid reporting and maintenance of records in a readily acceptable form.7

7 www.oie.int/index.php?id=169&L=0&htmfile=chapitre_1.4.3.htm
Should the concept be adopted by relevant trading partners, and governments (Australian, state and territory) and industry consider it applicable to the livestock industry, individual premises that want to use the principles of compartmentalisation will need approval from the state or territory CVO.

Although compartmentalisation may provide an advantage for the management of some EADs, market value must be balanced against cost to domestic trade.

1.6 Training in emergency animal disease preparedness

The National EAD Training Program, managed by Animal Health Australia, provides training for livestock producers, veterinarians, other government personnel and representatives of the Australian livestock industries. The program’s purpose is to prepare people for roles they may undertake in an EAD response. Each livestock industry ensures that there is a pool of skilled people trained to work as ILOs and industry liaison coordinators. It is a requirement of the EADRA that, where possible, jurisdictions use accredited, trained staff to combat an EAD.

2 Nature of the enterprise

The occurrence of an emergency animal disease (EAD) in a saleyard could have a devastating impact because of the possibility of rapid dissemination of the disease to many properties over a wide area. This section describes the operation of saleyards, including relevant legislation and codes; the major EADs of concern to saleyards; and factors relevant to entry of disease to, and spread of disease from, saleyards.

2.1 Description of the enterprise

Saleyard operators usually belong to the Australian Livestock Markets Association. The website of this industry organisation9 lists all member saleyards in Australia, including owner contact details.

The association promotes a voluntary code of practice for the operation of saleyards — *The Australian Code of Practice for the Selling of Livestock* (23 November 2007). The code covers structural and operational requirements and is a useful reference for staff responding to an EAD on the elements of saleyard operation. It recommends that operators develop EAD response plans and shows an example of a plan.

Saleyards are defined as public or privately owned venues where livestock are assembled for sale and purchase. Types of sales include:

- fat sales — where stock are primarily intended for sale for direct slaughter
- store sales — where stock are primarily intended for purchase by other livestock owners for growing out, fattening or breeding
- stud sales — where stock are primarily intended for purchase as breeders; the value of animals often exceeds normal commercial values
- bobby calf sales (and assembly points for bobby calves).

Pre-export quarantine (PEQ) for live animal exports is a risk enterprise, where large numbers of stock are quarantined in preparation for transport to the importing country. PEQ operational standards are documented in the *Australian Standards for the Export of Livestock*.10

The species of stock considered in this manual are principally cattle and sheep, with some reference to pigs and goats. The same principles apply to horses and camelids, which are occasionally assembled for sale.

9 www.saleyards.info
This manual does not cover:

- infrequent sales (e.g., those held once or twice per year), agricultural shows and field days — however, the underlying principles are similar to those for saleyards
- poultry sales
- ex-saleyards that are used as spelling yards.

Saleyard owners will need to take responsibility for activities occurring on their premises that are not associated with sales.

Transport includes road and rail transport (where applicable) as it relates to the movement of stock to and from saleyards.

Most saleyards are operated by boards or private operators and are managed by a saleyard manager. The manager, through the board and by-laws or contracts, has authority for all activities within the saleyard, including control of agents. Agents are typically responsible for providing the labour to pen and move stock, and personnel in the yard are usually employed by the agent, rather than the saleyard operator.

Major saleyards are usually locked to prevent the unauthorised entry of stock. When stock are delivered, they are checked in, counted and documented on delivery dockets. Processes are in place to ensure that the identity and integrity of each lot is maintained.

National Livestock Identification System (NLIS) tags for cattle are scanned on arrival, providing an electronic record of the identity and source of all cattle on the premises. This record is held by the saleyard manager.

In large saleyards, National Vendor Declarations will also be scanned into the saleyard manager's computer database. Original copies are held by the livestock agent.

When livestock are purchased, the buyer authorises their movement from the saleyard by working with the saleyard operator to generate a consignment note or waybill. This document will usually be necessary before saleyard security staff permit release of the stock. All records of waybills are kept by both the buyer and the saleyard operator as a 'buyer's instruction sheet', which could be used to quickly identify recent movements of stock from the saleyard. The NLIS database will also identify the destination of stock if the details have been entered into the database within the prescribed time.

Most livestock agents belong to the Australian Livestock and Property Agents Association,\(^\text{11}\) which can be contacted if information is required from a member.

\(^{11}\)www.alpa.net.au
2.1.1 Legislation relevant to saleyards and transport

Legislation for the control of EADs has been enacted at both the national and the state/territory levels. The national legislation is primarily concerned with preventing the introduction and establishment of disease or of things that may carry disease. State and territory legislation aims to control and eradicate disease in animals, and establishes controls over animal movement, treatment, decontamination, slaughter and compensation. Wide powers are conferred on government veterinarians and gazetted inspectors of stock, including the power to enter premises, order stock musters, test animals, and order the destruction of animals and products that are suspected of being infected or contaminated.

State and territory EAD legislation is listed in the AUSVETPLAN Summary Document. Types of legislation relevant to control of EADs in a saleyard are listed in Table 2.1.

Table 2.1 Indicative legislation with implications for the control of EADs in a saleyard

<table>
<thead>
<tr>
<th>Legislationa</th>
<th>Influence</th>
</tr>
</thead>
</table>
| Stock diseases Acts and regulations | • Provide powers for government veterinarians or gazetted inspectors of stock to enter premises to quarantine and destroy diseased animals
• Provide for compensation
• Establish the rights of owners |
| Exotic disease Acts and regulations | • Provide powers for government veterinarians or gazetted inspectors of stock to detect disease; control infected premises and areas; control and trace movements of animals, people, vehicles and animal products; quarantine and destroy infected animals and products
• Provide for compensation
• Provide for rights of owners |
| Animal welfare Acts and regulations | • Require provision of food, water, shelter
• Require care of sick, weak or injured animals |
| Environmental protection Acts and regulations | • Provide for protection of environment (eg odour, burial, groundwater) |
| Transport of livestock Acts and regulations | • Relate to times travelled, loading densities |

a Specific titles of Acts and regulations vary between the states and territories.

2.1.2 Animal welfare

Retention of stock in a saleyard may precipitate welfare problems, such as difficulties with feeding of bobby calves, or disposing of effluent in large saleyards.

In the event of an EAD outbreak, most impacts of general codes relating to saleyard management — for example, cleaning and maintenance requirements — will be positive. However, if stock are assembled for a prolonged time before sale, this might increase the risk of spread of disease if sales continue during the outbreak.

The saleyard industry has recently established a voluntary National Saleyards Quality Assurance Program, which is being implemented by individual saleyard operators. Accreditation with this program is a commitment by saleyards to meet and maintain recognised national standards for the handling of livestock through all stages of the prime market and store/re-stocker market. The program addresses
issues relating to construction, siting and drainage of facilities; security; animal welfare and husbandry of animals; attention to sick and dead stock; reporting and recording of animal movements; and meat quality and residues.

The Australian Livestock Transporters Association has introduced a voluntary, independently audited quality assurance program, known as TruckCare, for the livestock transport industry. It documents policies and procedures, based on model codes of practice, to be followed for matters such as livestock handling and inspection of stock at loading, in transit and during unloading.

Maintenance of high animal welfare standards will be essential during an EAD response, consistent with relevant legislation, codes, standards and guidelines, and the Australian Animal Welfare Strategy (see below).

The AUSVETPLAN operational procedures manual Livestock Welfare and Management is relevant to the response plans described in this manual.

Levels of animal welfare requirements

Under constitutional arrangements, legislative responsibility for animal welfare rests primarily with state and territory governments, which have their own acts and regulations. The Australian Government has responsibility for trade and international agreements, and its legislation covers the welfare of animals exported live or processed at export abattoirs.

Local governments have responsibility for some areas of animal control (e.g., animals at large) and public health that can have a significant impact on animal welfare. This includes providing feedback to state and territory governments to change legislation, and promotion and maintenance of responsible animal ownership.

During an EAD response, any action taken on welfare grounds alone must comply with the provisions of the animal welfare legislation in the relevant jurisdiction. The animal welfare officer and animal welfare coordinator should have copies of the appropriate legislation readily available for reference.

Animal welfare requirements at the state/territory level

State and territory legislation relating to animal welfare is listed below.

Australian Capital Territory
- Animal Welfare Act 1992

New South Wales
- Prevention of Cruelty to Animals Act 1979

Northern Territory
- Animal Welfare Act 1999

Queensland
- Animal Care and Protection Act 2001
South Australia
- Prevention of Cruelty to Animals Act 1985

Victoria
- Prevention of Cruelty to Animals Act 1986

Tasmania
- Animal Welfare Act 1993

Western Australia
- Animal Welfare Act 2002

The Australian Animal Welfare Strategy

The Australian Animal Welfare Strategy (AAWS) was developed by the National Consultative Committee on Animal Welfare and approved by the Primary Industries Ministerial Council in May 2004. The AAWS is available on the website of the Australian Government Department of Agriculture, Fisheries and Forestry (DAFF).12

The AAWS has been developed to outline directions for future improvements in the welfare of animals, and to provide national and international communities with an appreciation of animal welfare arrangements in Australia. Work is now under way to update the model codes of practice and convert them into Australian animal welfare standards and guidelines, for endorsement by the Standing Council on Primary Industries (formerly the Primary Industries Ministerial Council). The new documents will incorporate both national welfare standards and industry guidelines.

The standards and guidelines provide the basis for developing and implementing consistent legislation and enforcement across Australia, and direction for all responsible for livestock welfare. They reflect available scientific knowledge, current practice and community expectations. The standards and guidelines may be reflected in industry-based quality-assurance programs.

2.2 Emergency diseases of concern

More than 60 EADs are currently identified as sufficiently serious to require coverage by the EAD Response Agreement13 (see also Section 1.3 and Appendix 1). Most are exotic, but some (such as anthrax and Hendra virus) are endemic.

This manual uses foot-and-mouth disease (FMD) as an example scenario, but the principles from this scenario apply to all EADs, adjusting for the epidemiology, economic impact and public health aspect of a particular disease. Diseases that

primarily affect cattle, sheep, goats and pigs are described briefly below. For more information on these diseases, see the relevant Disease Strategy.

African swine fever
African swine fever is a highly contagious, generalised viral disease of pigs, with no other mammalian hosts. It is transmitted by direct contact, inanimate objects and ticks. The virus is very resistant to inactivation. The acute form of the disease is characterised by pronounced haemorrhage of internal organs and a mortality of up to 100% in infected herds. Milder forms of the disease also occur.

Anthrax
Anthrax is an acute, infectious bacterial disease that can affect humans and a wide range of domestic and wild animals. Ruminants tend to be the most susceptible; however, all mammals are susceptible to some degree. The clinical forms of anthrax in animals are traditionally described as:

- peracute (very acute), in which death occurs suddenly (within a few hours, at most, of the onset of clinical signs)
- acute, in which death occurs from 24 hours to a few days after onset
- subacute or localised, which lasts for several days and may end in recovery.

In cattle, sheep and goats, the disease is usually peracute; in pigs, it is localised.

Aujeszky’s disease
Also known as pseudorabies, Aujeszky’s disease is caused by a herpesvirus that infects the nervous system and other organs such as the respiratory tract in almost all mammals except humans and the tailless apes. It is primarily associated with swine, which may remain latently infected (ie with the virus lying dormant [latent] within cells of the pigs) following clinical recovery.

Bluetongue
Bluetongue is a viral disease of ruminants that is transmitted by specific species of biting midges (*Culicoides* spp.). Sheep are the most severely infected species of livestock. The disease is characterised by inflammation of the mucous membranes, widespread haemorrhages and oedema. Ten serotypes of the virus, some pathogenic to sheep, have been detected in northern and eastern Australia.

Bovine spongiform encephalopathy
Bovine spongiform encephalopathy (BSE) is a fatal neurological disease of adult cattle, characterised by a long incubation period, followed by progressive degeneration. Typical signs are abnormal posture, development of violent behaviour, heightened sensory perception, decreased milk production, weight loss (despite a good appetite) and death.

The disease was first recognised in the United Kingdom in 1986, and probably arose because changed practices in processing meatmeal permitted transmission of the scrapie agent to cattle.
Animals showing neurological signs are to be identified to property of origin, clinically examined and subjected to postmortem examination, and the brain is to be collected for laboratory examination. Detailed special procedures for brain collection should be followed. Animals suspected of having BSE should be destroyed and not used for human or animal consumption.

Brucellosis

Bovine brucellosis is a chronic infectious disease of cattle caused by the bacterium *Brucella abortus*, an intracellular parasite. It results in abortion, stillbirth, infertility and reduced milk production. The disease was effectively eradicated in Australia by 1989. Other *Brucella* species\(^\text{14}\) infect pigs, sheep, goats, dogs, marine mammals and rodents. Humans are susceptible.

Classical swine fever (hog cholera)

Classical swine fever is a highly contagious disease that is capable of spreading rapidly in susceptible pig populations. In the acute form, the disease is characterised by fever, severe depression, multiple haemorrhages and rapid death. Less virulent strains of the virus cause subacute and chronic forms of the disease, which include complications of pneumonia and diarrhoea. Typically, the disease is clinically indistinguishable from African swine fever.

Foot-and-mouth disease

FMD is an acute, highly contagious viral infection of domestic and wild cloven-hoofed animals. The presentation and severity of clinical signs vary between species; they include fever, poor appetite, lameness, salivation, and vesicles in, or on, the mouth, nose, feet and teats. Serious production losses can occur, but deaths are unlikely except among young animals.

Japanese encephalitis

Japanese encephalitis is a mosquito-borne viral disease of humans and animals. It occurs throughout much of Asia, sometimes causing encephalitis in humans. Adult pigs normally show no clinical signs, but pregnant sows may abort or produce mummified foetuses, or stillborn or weak piglets. In horses, the clinical signs vary from a mild transient fever to high fever, blindness, collapse, and death in 5–40% of affected animals.

The virus does not persist outside infected animals and mosquitoes, and is not a problem for the production of pigmeat (including game pigmeat).

Lumpy skin disease

Lumpy skin disease is an acute, generalised viral skin disease of cattle. It is highly infectious and is characterised by fever, ocular and nasal discharges, the eruption of cutaneous nodules, swelling of superficial lymph nodes, and oedema of the

\(^{14}\) Refer to the latest *Animal Health in Australia* report for more information (www.animalhealthaustralia.com.au/publications)
limbs. It is caused by a strain of the same virus (Capripoxvirus) that causes sheep pox and goat pox.

Peste des petits ruminants

Peste des petits ruminants in sheep and goats resembles rinderpest of cattle and is caused by a virus closely related to the virus that causes rinderpest. It is characterised by fever, enteritis, high morbidity and high mortality.

Rabies

Rabies is an almost invariably fatal viral encephalitis that affects all mammals. It is transmitted principally by the bite of a rabid animal, and has a long and variable incubation period. The main reservoir hosts include members of the Canidae (dogs, foxes).

If the presence of a rabid animal is suspected, human safety is paramount. Extreme care must be taken in dealing with suspect animals. Animals exhibiting any of the signs of rabies should not be handled, and muzzling of suspect carnivores should not be attempted.

Rift Valley fever

Rift Valley fever is a mosquito-borne viral disease of cattle, sheep, goats and humans, characterised by high rates of abortion and high mortality rates in young animals. Since severe disease can occur in humans, special safety precautions are required when handling infected animals.

Scrapie

Scrapie is a transmissible spongiform encephalopathy that occurs in sheep and goats. It is primarily transmitted from ewe (or doe) to offspring, either before or shortly after birth, as a result of close contact between dam and offspring, probably via contaminated uterine fluids. Spread between lambs can occur, especially when lambing is in confined areas. Scrapie has a long incubation period (1–3 years or longer). Clinical signs of pruritus and incoordination progress to depression, recumbency and death. Animals that never develop clinical signs can still be a source of infection to others.

Screw-worm fly

Myiasis caused by larvae of the screw-worm fly is characterised by larvae feeding on living tissues in open wounds of any warm-blooded animal host, resulting in debility and some deaths. The flies prefer warm, moist conditions and a temperature range of 16–30 °C.

Sheep pox and goat pox

Sheep pox and goat pox are highly contagious skin diseases of small ruminants, characterised by fever, excess salivation, nasal and eye discharges, and pustules on exposed body surfaces. There is often a high mortality rate. The virus is very resistant to inactivation in the environment. Its degree of host specificity varies.
Swine vesicular disease
Swine vesicular disease is caused by an enterovirus that is closely related to the human coxsackie virus B5. The disease is characterised by fever and lameness, as a result of vesicles and erosions on the feet. It is clinically indistinguishable from FMD.

Transmissible gastroenteritis
Transmissible gastroenteritis is an enteric viral disease of pigs, caused by a coronavirus. It results in rapid dehydration, profuse diarrhoea and rapid death in piglets under 3 weeks of age.

Vesicular exanthema
Vesicular exanthema is an acute viral disease of pigs characterised by vesicles on the snout, in the mouth and on the feet. The clinical disease is indistinguishable from FMD. The vesicular exanthema virus is very closely related to viruses isolated from marine animals, and an outbreak in pigs was associated with the feeding of contaminated food scraps containing marine animal product.

Vesicular stomatitis
Vesicular stomatitis is a viral disease, principally of cattle, horses and pigs. It can cause signs indistinguishable from FMD (except that horses can also be infected). The disease has only been seen in north, central and South America. Its epidemiology is still unclear, but transmission cycles between insects and small wild ruminants are known to occur.

2.3 Occupational health and safety
Most EADs only affect animals, but a few can infect humans, with varying consequences. Table 2.2 lists these diseases, their effect on people and the implications for handling a disease outbreak in a saleyard.
Table 2.2 Emergency animal diseases that affect humans

<table>
<thead>
<tr>
<th>Disease</th>
<th>Effect on humans</th>
<th>Influence on handling disease in a saleyard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthrax</td>
<td>Cutaneous, respiratory or gastrointestinal effects</td>
<td>Avoid inhaling or ingesting spores and avoid exposure to cut or abraded skin; use personal hygiene</td>
</tr>
<tr>
<td>Brucellosis</td>
<td>Fever, sweating, weakness, anaemia, headaches, depression, muscular and bodily pain</td>
<td>Avoid inhaling or ingesting dust; avoid contact with cut or abraded skin; use personal hygiene</td>
</tr>
<tr>
<td>Japanese encephalitis</td>
<td>Can cause encephalitis</td>
<td>Use insect protection (mosquito-borne disease, mainly in pigs and horses)</td>
</tr>
<tr>
<td>Rabies</td>
<td>Death</td>
<td>Treat all suspect cases with great care to avoid being bitten or allowing infective saliva to come into contact with eyes, cuts or abrasions</td>
</tr>
<tr>
<td>Rift Valley fever</td>
<td>Influenza-like disease, with occasionally more serious complications, including death</td>
<td>Avoid exposure to blood and discharges</td>
</tr>
<tr>
<td>Screw-worm fly</td>
<td>Mьiasis</td>
<td>Monitor, especially in northern Australian saleyards, and promptly treat wounds</td>
</tr>
<tr>
<td>Sheep pox and goat pox</td>
<td>Skin lesions (only isolated incidents — people are generally considered resistant)</td>
<td>Use personal hygiene</td>
</tr>
<tr>
<td>Vesicular stomatitis</td>
<td>Influenza-like disease</td>
<td>Use personal hygiene</td>
</tr>
</tbody>
</table>

2.4 AUSVETPLAN and international standards

The World Organisation for Animal Health (OIE), established in 1924 to promote world animal health, provides standards for health regulations for the international trade of animals and animal products. For animals covered by this manual, this is achieved through the OIE Terrestrial Animal Health Code. The aim of the Terrestrial Code is to assure the sanitary safety of international trade in terrestrial animals and their products. It details health measures to be used by the veterinary authorities of importing and exporting countries to prevent the transfer of agents pathogenic for animals or humans, while avoiding unjustified sanitary barriers.

Volume I of the Terrestrial Code presents definitions of the terms and expressions used, procedures for international reporting of diseases, ethical rules for international trade and certification, the principles of import risk analysis, and the organisation of import and export procedures.

Volume II sets out the measures recommended by the OIE to cover the ‘priority’ diseases for international trade. These measures take into account the wide range of animal disease situations that could prevail in OIE member countries.

15 www.oie.int/international-standard-setting/terrestrial-code/access-online
The Terrestrial Code recommendations for each disease are shown in the relevant AUSVETPLAN **Disease Strategy**. Table 2.3 lists major EADs covered by the EAD Response Agreement\(^\text{16}\) (see Section 1.3 and Appendix 1) and their incubation or infective periods, with links to the relevant parts of the Terrestrial Code.

Table 2.3 OIE Terrestrial Code recommendations for major emergency animal diseases

<table>
<thead>
<tr>
<th>Disease</th>
<th>OIE incubation or infective period</th>
<th>OIE recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>African swine fever</td>
<td>Infective period 40 days</td>
<td>www.oie.int/index.php?id=169&L=0&htmfile=chaptre_1.15.1.htm</td>
</tr>
<tr>
<td>Anthrax</td>
<td>Incubation period 20 days</td>
<td>www.oie.int/index.php?id=169&L=0&htmfile=chaptre_1.8.1.htm</td>
</tr>
<tr>
<td>Aujeszky's disease</td>
<td>No period given</td>
<td>www.oie.int/index.php?id=169&L=0&htmfile=chaptre_1.8.2.htm</td>
</tr>
<tr>
<td>Bluetongue</td>
<td>Infective period 60 days</td>
<td>www.oie.int/index.php?id=169&L=0&htmfile=chaptre_1.8.3.htm</td>
</tr>
<tr>
<td>Bovine spongiform encephalopathy</td>
<td>No period given</td>
<td>www.oie.int/index.php?id=169&L=0&htmfile=chaptre_1.11.5.htm</td>
</tr>
<tr>
<td>Classical swine fever</td>
<td>Incubation period varies from 5 days to 3 months in cases of chronic infection</td>
<td>www.oie.int/index.php?id=169&L=0&htmfile=chaptre_1.15.2.htm</td>
</tr>
<tr>
<td>Foot-and-mouth disease</td>
<td>Incubation period 14 days</td>
<td>www.oie.int/index.php?id=169&L=0&htmfile=chaptre_1.8.5.htm</td>
</tr>
<tr>
<td>Japanese encephalitis</td>
<td>Incubation period 21 days</td>
<td>www.oie.int/index.php?id=169&L=0&htmfile=chaptre_1.8.7.htm</td>
</tr>
<tr>
<td>Lumpy skin disease</td>
<td>Incubation period 28 days</td>
<td>www.oie.int/index.php?id=169&L=0&htmfile=chaptre_1.11.12.htm</td>
</tr>
<tr>
<td>Rabies</td>
<td>Incubation period 6 months</td>
<td>www.oie.int/index.php?id=169&L=0&htmfile=chaptre_1.8.10.htm</td>
</tr>
<tr>
<td>Rift Valley fever</td>
<td>Infective period 30 days</td>
<td>www.oie.int/index.php?id=169&L=0&htmfile=chaptre_1.8.11.htm</td>
</tr>
<tr>
<td>Screw-worm fly</td>
<td>Not applicable</td>
<td>www.oie.int/index.php?id=169&L=0&htmfile=chaptre_1.8.8.htm</td>
</tr>
<tr>
<td>Swine vesicular disease</td>
<td>Incubation period 28 days</td>
<td>www.oie.int/index.php?id=169&L=0&htmfile=chaptre_1.15.4.htm</td>
</tr>
<tr>
<td>Transmissible gastroenteritis</td>
<td>Infective period 40 days</td>
<td>www.oie.int/index.php?id=169&L=0&htmfile=chaptre_1.15.5.htm</td>
</tr>
<tr>
<td>Vesicular stomatitis</td>
<td>Incubation period 21 days</td>
<td>www.oie.int/index.php?id=169&L=0&htmfile=chaptre_1.8.15.htm</td>
</tr>
</tbody>
</table>

a The incubation period is the longest period that elapses between the introduction of the pathogen into the animal and the occurrence of the first clinical signs of the disease.

b The infective period is the longest period during which an affected animal can be a source of infection; infection means presence of the pathogenic agent in the host.

An important factor to consider when deciding the fate of diseased or suspect livestock is OIE and trading partner requirements with regard to meat and meat products. As trading partner requirements may be more conservative than guidelines listed in the OIE Terrestrial Code, any decision to salvage slaughter potentially infected livestock should be taken after thorough consideration of the issues and consultation with DAFF Biosecurity. Section 5.4 of this manual expands on some of these considerations.
2.5 Animal species and/or product entering saleyards

The main livestock species considered in this document are cattle, sheep, goats and pigs. Feed enters the saleyard primarily in the form of hay.

Movement of livestock through the saleyard system usually occurs rapidly, both before and after the sale.

2.6 Outputs — risk of disease spread from saleyards

There is considerable opportunity for disease to spread within and from saleyards. Saleyards are high-risk enterprises, because infected livestock passing through them can rapidly disseminate the disease to a large number of properties over a wide geographical area. This risk affects both current and future sales, as many disease agents persist for a considerable time in the environment.

Live animals, people, vehicles, vectors, wind, fomites and effluent are all potential means of spread. The relative importance of these means of spread depends on the nature of the disease involved, the source of infection, the number of animals affected, and the degree of contamination of saleyards, vehicles, people and items. Given the potentially very large number of opportunities for disease spread, it is vital that the degree of risk for each animal, person or item is assessed and control activities are prioritised.

The main infectious outputs from saleyards will be livestock and their excretions (including manure and urine), and contaminated livestock transports, people, clothing and boots. The main means of spread will be direct contact between infected and susceptible stock in the saleyard, and the movement of stock incubating the disease but not yet showing any clinical signs of illness. Other means of spread include indirect contact between infective and susceptible animals via:

- transports carrying infected livestock
- people who have had contact with infected stock
- contaminated equipment
- other vehicles, people, effluent and, for some diseases, insects
- windborne spread, under some circumstances.

The challenge when confronted with a suspected disease outbreak will be to prioritise investigation and control activities, particularly as initial information and resources are likely to be limited. The three basic tools of disease control are:

- quarantine (movement control)
- destruction and disposal of affected or at-risk stock
- disinfection of contaminated areas and things.

Although these tools can be applied very successfully with little knowledge of the particular disease of concern, more effective and targeted strategies can be used if there is knowledge of where the disease came from, how it spreads and where it may have spread to.
2.6.1 Factors to consider in assessing risk of disease spread

Livestock
Livestock movements will, in most cases, be the most important means of spread. Store sales, which involve movement of stock to many other properties, present greater potential risks than fat sales, from which most livestock go to an abattoir for slaughter.

People
People may spread some diseases. The risk depends on the person’s degree of exposure to the disease, the disease agent and the likelihood of the disease being passed on, which relates to the time interval to the person’s next animal contact and their degree of contact with the next animal.

People can be divided into risk categories:
- close contact, high risk — agents, livestock handlers, livestock carriers, veterinarians, owners of infected stock
- moderate contact, moderate risk — farmers (other than owners of infected stock), stock buyers
- low contact, low risk — general public, canteen staff.

Vehicles
Vehicles can also spread some diseases. The risk depends on the degree of exposure of the vehicle to the disease, the disease agent and the likelihood of the disease being passed on, which relates to the time interval to the vehicle’s next animal contact and the degree of contact with the next animal.

Vehicles may be divided into risk categories:
- close contact, high risk — vehicles that transported stock from the infected premises
- moderate contact, moderate risk
 - vehicles that transported stock (but not from the infected premises)
 - farm vehicles, such as utilities that carry stockfeed and/or are driven into paddocks or stockyards
 - stock agents’ and yard workers’ vehicles
- low contact, low risk — vehicles used by the general public and canteen staff.

Effluent
Effluent from saleyards and truck-washing facilities may contain infectious material. However, since the material is likely to be greatly diluted, the risk of disease transmission is low unless susceptible species come into direct contact with the effluent, or aerosols are produced during its production or disposal.

Windborne spread
Windborne (aerosol) spread from saleyards can be a considerable risk, especially for FMD under conditions involving cool, gentle breezes and high humidity.
Aerosol spread may be more important in spreading disease within the saleyard complex. The proximity of susceptible stock to saleyards will be an important factor in risk assessment.

Other factors
In assessing the risk of spread, other factors to consider include:

- the area that stock and people have been assembled from and will disperse to
- the prevailing weather conditions
- the potential contact time between infected and other stock (ie the time that infected and other stock are held in the same yards, or yards in close proximity)
- the degree of direct and indirect contact between infectious and susceptible animals in common ramps, laneways, scales and yards.

If a disease agent persists and is present in a product or on an item, infection will not necessarily result when a susceptible animal comes into contact with that product or item. In general, contact with a considerable number of virus particles is required to initiate infection in susceptible animals; the number of virus particles required is strongly influenced by the route of infection.

2.6.2 Risk of spread of specific diseases
Table 2.4 summarises information relevant to the risk of spread of the diseases relevant to saleyards by various mechanisms. This information can be used in conjunction with Figure 2.1 and Table 2.5 to prioritise activities.
Table 2.4 Mechanisms of spread of major emergency animal diseases

<table>
<thead>
<tr>
<th>Disease</th>
<th>Species</th>
<th>Insect vector</th>
<th>Level of importance of means of disease spread for disease control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Live animal contact</td>
</tr>
<tr>
<td>African swine fever</td>
<td>Pig</td>
<td>Tick</td>
<td>High</td>
</tr>
<tr>
<td>Aujeszky's disease</td>
<td>Pig</td>
<td>None</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Cattle</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Sheep</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Goat</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Dog</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Cat</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Bluetongue</td>
<td>Sheep</td>
<td>Culicoides</td>
<td>Zero</td>
</tr>
<tr>
<td></td>
<td>Goat</td>
<td>Zero</td>
<td>Zero</td>
</tr>
<tr>
<td></td>
<td>Cattle</td>
<td>Zero</td>
<td>Zero</td>
</tr>
<tr>
<td></td>
<td>Buffalo</td>
<td>Zero</td>
<td>Zero</td>
</tr>
<tr>
<td></td>
<td>Deer</td>
<td>Zero</td>
<td>Zero</td>
</tr>
<tr>
<td>Bovine spongiform encephalopathy</td>
<td>Cattle</td>
<td>None</td>
<td>Zero</td>
</tr>
<tr>
<td>Classical swine fever</td>
<td>Pig</td>
<td>None</td>
<td>High</td>
</tr>
<tr>
<td>Foot-and-mouth disease</td>
<td>Pig</td>
<td>None</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Cattle</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Sheep</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Goat</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Buffalo</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Deer</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Japanese encephalitis</td>
<td>Horse</td>
<td>Mosquitoes</td>
<td>Zero</td>
</tr>
<tr>
<td></td>
<td>Pig</td>
<td>Zero</td>
<td>Zero</td>
</tr>
<tr>
<td>Disease</td>
<td>Species</td>
<td>Insect vector</td>
<td>Live animal contact</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---------------</td>
<td>--------------------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lumpy skin disease</td>
<td>Cattle</td>
<td>Biting flies, mosquitoes</td>
<td>Moderate</td>
</tr>
<tr>
<td>Peste des petits ruminants</td>
<td>Sheep</td>
<td>None</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Goat</td>
<td></td>
<td>High</td>
</tr>
<tr>
<td>Rabies</td>
<td>Mammals</td>
<td>None</td>
<td>High</td>
</tr>
<tr>
<td>Rift Valley fever</td>
<td>Sheep</td>
<td>Mosquitoes</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Goat</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Cattle</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Buffalo</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Camel</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Human</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Scrapie</td>
<td>Sheep</td>
<td>None</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>Goat</td>
<td>Moderate</td>
<td>Low</td>
</tr>
<tr>
<td>Screw-worm fly</td>
<td>Mammals</td>
<td>None</td>
<td>High</td>
</tr>
<tr>
<td>Sheep pox and goat pox</td>
<td>Sheep</td>
<td>Flies, mosquitoes, Culicoides</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Goat</td>
<td>High</td>
<td>High (short distance)</td>
</tr>
<tr>
<td>Swine vesicular disease</td>
<td>Pig</td>
<td>None</td>
<td>High</td>
</tr>
<tr>
<td>Transmissible gastroenteritis</td>
<td>Pig</td>
<td>None</td>
<td>High</td>
</tr>
<tr>
<td>Vesicular exanthema</td>
<td>Pig</td>
<td>None</td>
<td>High</td>
</tr>
<tr>
<td>Vesicular stomatitis</td>
<td>Cattle</td>
<td>Biting flies</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>Horse</td>
<td>Mosquitoes</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>Pig</td>
<td>Culicoides</td>
<td>Moderate</td>
</tr>
</tbody>
</table>
Foot-and-mouth disease

Figure 2.1 shows possible contacts and means of spread for FMD in a saleyard. A similar diagram would be needed to evaluate the risks for other diseases.

Figure 2.1 Possible contacts and means of spread of foot-and-mouth disease from an infected animal in a saleyard

Table 2.5 provides a guide to how long FMD virus can persist under a range of conditions, and which livestock products and wastes have the greatest chance of carrying infection for prolonged periods. It does not provide information on the probability of infection following contact with various secretions.
Table 2.5 Survival of FMD virus in secretions, excretions and products

<table>
<thead>
<tr>
<th>Secretion, excretion or product</th>
<th>Survival time under optimal conditions (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faeces — in hay</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>— dry in pens</td>
</tr>
<tr>
<td>Blood — on gumboots</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>— dry on bricks/wood</td>
</tr>
<tr>
<td>Saliva</td>
<td>140</td>
</tr>
<tr>
<td>Urine</td>
<td>30–40</td>
</tr>
<tr>
<td>Milk</td>
<td>7</td>
</tr>
<tr>
<td>Mucus from upper respiratory tract (humans)</td>
<td>1</td>
</tr>
</tbody>
</table>

Source: Morgan (1993)
3 Risk reduction and contingency planning

Contingency planning is necessary for exotic emergency animal diseases (EADs). It also has spin-off benefits in reducing losses from unexpected endemic diseases. Each saleyard should make plans that may be useful in the event of a disease emergency.

A check list for preparation before an outbreak is provided in Appendix 5.

3.1 Internal quarantine

Internal quarantine facilities should be planned in advance and maintained, in accordance with the perceived risks. Opportunities for physical division of different areas of the saleyard, as well as separation of livestock handlers, feed trucks and other potential sources of infection, should be considered.

The main purpose of an internal quarantine area will be to isolate sick animals or groups containing them. Within the quarantine area, unnecessary mixing of animal groups should be avoided. Internal quarantine areas should:

- have no direct contact with other animals, equipment or vehicles
- if possible, allow sick animals to be separated by 50–200 metres from other livestock
- not be exposed to effluent or run-off from other parts of the premises
- not expose other parts of the saleyard to effluent or run-off from the internal quarantine area
- have facilities arranged so that sick animals can be handled and fed last
- be handled by dedicated staff, or have staff undertake a decontamination procedure before handling other stock.

3.2 Veterinary services and training of staff

Veterinary services to the saleyard should be planned with a view to EAD preparedness. If a regular veterinarian is employed, they should be familiar with all relevant aspects of animal handling and saleyard management practices so that more informed decisions can be made if an EAD is suspected.

The veterinarian should be involved in basic training of saleyard staff in what to do (and what not to do) to minimise the spread of disease, including the correct techniques and precautions for collecting, packaging and dispatching specimens to prevent their contamination (see Section 3.3). Personnel dealing with livestock must be specially targeted for training and observant for any unusual disease signs.

Further information on training materials, including videos and slides, can be found in the Summary Document.
3.3 Collection and dispatch of laboratory specimens

Proper techniques and precautions should be used for collecting, packaging and dispatching specimens to prevent their contamination. Where specimens are taken by non-veterinary staff, proper procedures should be the subject of training by the saleyard veterinarian. The requirements for collection and transport of laboratory specimens are covered in each AUSVETPLAN Disease Strategy, and further information is available in the Laboratory Preparedness Manual.

3.4 Disposal methods

A single site should be selected for disposal of carcasses, although it may be necessary to prepare a new site from time to time. The disposal site should be determined in accordance with the requirements of local government and environmental protection agencies and guidelines. It should be secured to prevent disease spread.

Contingency plans should exist for the disposal of large numbers of animals and possibly the entire saleyard population. This will require knowledge of the soil type and profile, and the characteristics of the watertable in the immediate vicinity of the saleyard.

The dimensions of burial sites will depend on the species, age, size and production status (e.g., full wool or shorn) of the animals.

Refer to the Disposal Manual for specific details of disposal methods.

3.5 Record keeping

Proper routine recording of the movements (in and out) of animals (especially in the National Livestock Identification System database), feed ingredients, equipment and so on could be invaluable during the investigation of an EAD incident. The availability of adequate records of inputs and outputs may enable an earlier return to normal operations than would otherwise be possible. Such records should include:

- the source or destination of the animal or item
- the nature of the item
- the use to which the item will be put
- other relevant details.

Records should be designed so that they can be easily and quickly searched for relevant information.

To aid in risk assessment and the subsequent decision-making process, a map or plan of the saleyard should also be available to animal health authorities.

3.6 Water supply

If decontamination of vehicles and equipment is necessary, extra water may be required (see the Decontamination Manual). A supply of water adequate only for normal operations of the saleyard is not sufficient. The supply must be capable of providing significantly more than normal requirements.
3.7 Media and public relations

The Public Relations Manual contains detailed information on media and public relations activities in the event of an EAD incident, when a saleyard will inevitably be the target of intense media interest. Communication with the media should address only activities that directly affect the saleyard and transport vehicles. General inquiries about the particular disease or the control activities that are being undertaken in the area must be directed to the Public Relations Unit in the local control centre (see the Public Relations Manual). See Section 5.9 for further information.
4 Response plans in a declared area

4.1 Introduction

This section addresses the situation in which a saleyard is not designated as an infected premises (IP) or dangerous contact premises (DCP), but is located within either a restricted area (RA) or a control area (CA) for an EAD incident. Further information on recommended quarantine and movement controls is provided in Section 4 of the relevant Disease Strategy.

4.1.1 Declared areas

The term declared area is used to cover both RAs and CAs (as well as transmission areas for vector-borne diseases). These are defined below, but it should be noted that such areas may not necessarily be declared for certain diseases (e.g., noncontagious diseases such as bovine spongiform encephalopathy).

An RA is a relatively small declared area (compared with a CA) around IPs and DCPs, including as many suspect premises and trace premises as possible, that is subject to intense surveillance and movement controls. Movement out of the RA will be prohibited except under permit. Multiple RAs may exist within one CA. Guidelines for establishing RAs are provided in each AUSVETPLAN Disease Strategy and the World Organisation for Animal Health (OIE) Terrestrial Animal Health Code.

A CA will be a larger declared area around the RA(s) — initially, possibly as large as the state or territory in which the outbreak occurs — where restrictions will reduce the risk of disease spreading from the RA. It may be defined according to geography, climate and the distribution of feral animals. The boundary will be adjusted as confidence about the extent of the outbreak increases. In principle, animals and specified products will only be able to be moved out of the CA into the free area by permit.

The outside area (OA) is not a declared area but is used to describe the rest of Australia outside the declared areas. The OA will be subject to surveillance. Because it is highly desirable to maintain the OA as ‘disease free’, the movement of animals and commodities from the RA and CA into the OA will be restricted.

4.1.2 Local control centre

In the event of an EAD incident, each state or territory is responsible for its own disease control activities under the direction of the state or territory chief veterinary officer, and in accordance with the EADRDP developed at the state control centre level. A local control centre (LCC) will be established and will be responsible for all activities within the declared area, including disease investigation, collection of specimens, quarantine of properties, valuation, slaughtering and disposal of livestock, and decontamination of properties.

Saleyard managers and the saleyard veterinarian should be in contact with the LCC Controller. All staff must be made fully aware of LCC requirements and of arrangements made to control and eradicate the disease.
4.2 Continued operation of an enterprise in a declared area

4.2.1 Restricted area

During an EAD incident, sales and other public congregations of stock would be prohibited in an RA. Some stock and product movements would be allowed under permit after assessment of the risk and the need for movement.

4.2.2 Control area

Following risk assessments, movement of stock and possibly sales would be permitted in a CA. It could be 3 weeks or more (possibly after the incubation period for the particular disease has elapsed) before stock movements are allowed to resume. Since direct selling systems, such as tender or auction sale by description, are available, there may be little justification for congregation of stock in saleyards in CAs. If an EAD incident continues for some time, pressure may mount to allow sales in CAs. Factors that may be taken into consideration in the decision about whether to approve sales in a CA are summarised below.

Benefits of sales

Auction sales are a traditional selling option, with proponents claiming that such sales:

- provide an outlet for small lots of stock
- set the price for most classes of stock
- provide a substantial benefit to local communities, particularly increased business activity.

Availability of alternatives

Direct marketing of livestock is becoming increasingly popular. This may involve prices being established by:

- a grid system
- direct negotiation between vendor and buyer
- tender or auction sale by description.

Direct selling options are now available for most species and classes of stock in most parts of Australia.

Disease involved

Saleyards may be very important in the transmission of acute, highly contagious diseases that are spread by close contact, particularly if the disease affects several species — for example, foot-and-mouth disease (FMD). For diseases that affect only one species, such as African swine fever, it may be possible to continue sales for other species, provided that there is no risk of spread via cross-contamination (e.g., via livestock transports).

Diseases spread by insects, such as bluetongue and Rift Valley fever, may require control of congregation and dissemination of stock through saleyards as part of a regional approach.

For other diseases, such as bovine spongiform encephalopathy, which is spread via animal product, there is little benefit in preventing sales. However, good records must be maintained to ensure that stock movements can be traced if necessary. More information on the significance of saleyards in the spread of disease is available in Section 2.6 of this manual and the relevant AUSVETPLAN Disease Strategies.
Type of sale (show or field day)

Sales from which all stock are sent for direct slaughter present less risk than those that result in stock going to other premises. Sales that result in stock being disseminated over wide areas or long distances, or to high-risk operations such as feedlots, may present considerably higher risk.

Shows and field days will also present varying levels of risk, depending on the stock numbers involved, the duration of the event and other factors. Table 4.1 lists some risks and their relative importance. Using such an approach, it may be possible to allow resumption of a show, sale or field day under permit, with conditions limiting the species that may attend, the area from which animals may be drawn, the duration of the event and the proximity of the event to high-risk enterprises.

Table 4.1 Risk factors for saleyards, shows/fairs and field days

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Saleyard</th>
<th>Level of risk factor</th>
<th>Show/fair</th>
<th>Field day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>Moderate–high</td>
<td>Low–high</td>
<td>Low–high</td>
<td>Low–moderate</td>
</tr>
<tr>
<td>Range of species</td>
<td>Low</td>
<td>Low–high</td>
<td>Low–high</td>
<td>Low</td>
</tr>
<tr>
<td>Time assembled (days)</td>
<td>≤2</td>
<td>≤14</td>
<td>≤3</td>
<td></td>
</tr>
<tr>
<td>Ownership</td>
<td>Large and changing</td>
<td>Few–large</td>
<td>Few</td>
<td></td>
</tr>
<tr>
<td>People</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of high risk</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>Moderate</td>
</tr>
<tr>
<td>Number of low risk</td>
<td>Moderate</td>
<td>High</td>
<td>Low–high</td>
<td></td>
</tr>
<tr>
<td>Product (amount, risk)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stockfeed</td>
<td>Low, moderate</td>
<td>Moderate, high</td>
<td>Moderate, high</td>
<td>Moderate, high</td>
</tr>
<tr>
<td>Effluent</td>
<td>High, low</td>
<td>Variable</td>
<td>Variable</td>
<td></td>
</tr>
<tr>
<td>Produce</td>
<td>Low, low</td>
<td>Moderate, moderate</td>
<td>Low, moderate</td>
<td></td>
</tr>
<tr>
<td>Vehicles (risk)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Livestock</td>
<td>Moderate–high</td>
<td>Low–moderate</td>
<td>Low–moderate</td>
<td>Low–moderate</td>
</tr>
<tr>
<td>Other</td>
<td>Moderate–high</td>
<td>Moderate–high</td>
<td>Moderate–high</td>
<td>Moderate–high</td>
</tr>
<tr>
<td>Proximity to other livestock</td>
<td>Possibly close</td>
<td>Generally distant</td>
<td>Possibly close</td>
<td></td>
</tr>
</tbody>
</table>

* See Section 5.5.6 for further information.

4.3 Minimising operational risks

4.3.1 Livestock movements

Certain movements of livestock might be allowed in both RAs and CAs, under permits that impose conditions to minimise the risk of disease spread. These movements and associated permit conditions are outlined clearly in Section 4 of each AUSVETPLAN Disease Strategy.

An EAD incident could involve several discrete RAs within one or more CAs. For further details, refer to the relevant AUSVETPLAN Disease Strategy.

If sales are allowed under permit, the following precautions should be applied:

- Sales must not be conducted more frequently than once per week in any premises or part of a premises.
- Saleyard stock must enter and leave on an all-in-all-out basis, with the time for assembly limited to 12 hours before and after sale.
• Mingling and direct contact of stock from different properties must be minimised.
• Saleyards must not be used by other susceptible stock (eg as a holding area for in-transit stock).
• Saleyard management must maintain an accurate record of all movements on and off, to be verified against movement permits.
• Sick and dead animals must be examined by a veterinarian, to provide a diagnosis.
• Carcasses should be handled in accordance with the Disposal Manual.
• Access to an adequate supply of disinfectant for the disease in question must be assured.

4.3.2 Work animals
Working dogs and horses will be dealt with on a case-by-case basis, depending on the risk they pose through contact with stock outside the premises. In some cases, kennelling or stabling might need to be provided on site.

4.3.3 Stockfeed
Stockfeed will generally not be required at sales. If feed is required in exceptional circumstances, it can be purchased under permit from approved suppliers. Quantities purchased should be those necessary for immediate use. Long-term storage of feed at the saleyard should not be permitted.

4.3.4 Discharges
Effluent and stormwater emanating from saleyards will be disposed of in a way that prevents direct access by susceptible species. Discharge into municipal sewerage plants is of low risk, partly because of dilution of potentially infectious material, and the considerable time that elapses before fluid waste is released into the wider environment. Effluent disposal systems that involve direct flooding or spraying of effluent onto pastures that are grazed by susceptible stock are not acceptable unless the effluent is appropriately treated before discharge. Manure will need to be scraped from pens and yards, stacked, disinfected, composted or buried.

4.3.5 Vehicles
Livestock vehicles must be maintained in a clean condition and carry stock from only one property at any one time. Vehicles must be thoroughly cleaned and disinfected between loads.

A vehicle logbook recording details of stock pickups and deliveries must be maintained.

Access and parking are to be controlled.

Non-livestock transport vehicles must be parked separately from livestock transports, to minimise the risk of contamination.

4.3.6 Equipment and materials
All equipment and materials held at the saleyard that are likely to come into contact with livestock, or could be involved in the transfer of infection between animals, are to be maintained in a clean and functional state. Such equipment and materials should not leave the saleyard unless they have been decontaminated, as appropriate for the disease.
4.3.7 Personnel
Transport drivers, livestock agents, livestock handlers and veterinarians must maintain a high degree of hygiene, including cleaning and disinfecting footwear when entering and leaving properties and saleyards, and immediately replacing soiled clothing.

Non-essential movements between work sections should be avoided.

Members of the general public, buyers, other farmers, canteen staff and administration staff must not enter livestock yards or laneways, and may be required to clean and disinfect footwear when entering and leaving saleyards. People who own or care for susceptible stock should be thoroughly decontaminated after handling animals on a farm or in a saleyard (see the Decontamination Manual), and must not have contact with susceptible stock for a period, as directed by the LCC.

Attendance at sales by the general public should be discouraged.

4.3.8 Vermin and feral animals
Vermin and feral animals must be controlled. Feral and straying animals of susceptible species must be prevented from entering the saleyards.

4.3.9 Building and structures
In some situations, sales may be conducted on premises that can be secured and adequately cleaned and disinfected. In other situations, sales may be allowed in gravelled or earthen yards. Premises will be cleaned before and immediately after the sale by mechanical removal of organic matter and/or hosing down, preferably with high-pressure, high-volume water supply. These requirements are consistent with the Australian Code of Practice for the Selling of Livestock (Saleyard Operators Australia 2007).

4.4 Other precautions

4.4.1 Entry of infected animals or contaminated products to saleyards
The entry of infected (or potentially infected) animals, or contaminated (or potentially contaminated) products into saleyards is prohibited. Procedures outlined in Section 3 will minimise the risk of inadvertently introducing infected animals or contaminated products.

4.4.2 Saleyard implicated in the spread of infection after a sale is completed
If tracing of stock or vehicle movements indicates that infected or potentially infected stock have passed through a saleyard at some stage, action will need to be taken to:

- determine the risk of spread, to enable tracings to be prioritised
- assess the degree of potential residual contamination and implement further decontamination, if necessary.

The time since (possible) contamination, the standard of routine post-sale cleaning and the persistence of the disease agent will be major factors in determining the level of activity required.
5 Response plans in an infected or dangerous contact premises

5.1 Introduction

This section covers the situation in which a saleyard either has infected or suspect animals or has animals known to have been in direct contact with infected animals.

5.1.1 Premises classifications

The status of individual premises will be declared after an epidemiological risk assessment has been completed.

Infected premises

An infected premises (IP) is a defined area (which may be all or part of a property) in which an emergency animal disease (EAD) meeting the case definition exists.

Dangerous contact premises

A dangerous contact premises (DCP) is a premises that, based on a risk assessment, is considered highly likely to contain an infected animal(s) or contaminated animal products, wastes or things. For most diseases, the restricted area (RA) would be drawn around DCPs. The risk assessment would consider factors such as the stage of the response, the epidemiology of the disease, the animal(s) present and the local situation. Although the susceptible animal(s) on such premises are not showing clinical signs, they are considered to have been significantly exposed to the disease agent — this might be via an infected animal(s), a vector, or contaminated animal products, wastes or things.

Since a DCP presents an unacceptable risk to the response if the risk is not addressed, such premises are a high priority for investigation and action. An investigation of a DCP may produce the following outcomes:

- If the presence of an infected animal or contaminated animal products, wastes or things is confirmed, the premises would be designated as an IP.
- If their presence is not confirmed but the likelihood is considered to remain high, the premises would continue to be designated as a DCP.
- If, over the course of the response, it is considered unlikely that an infected animal or contaminated animal products, wastes or things are present, the premises would receive the qualifier assessed negative (AN). However, if the premises is located in the RA, it would be designated as an at-risk premises (ARP). If it is located in the control area (CA), it would be designated as a premises of relevance (POR).

Suspect premises

Suspect premises (SP) is a temporary designation applied to premises that contain a susceptible animal(s) not known to have been exposed to the disease agent but showing clinical signs that require investigation. Every effort should be made to resolve the status of an SP as soon as possible. For most diseases (including foot-and-mouth disease — FMD), the RA should contain as many SPs as practical. The investigation may produce the following outcomes:
• If the case definition is confirmed, the premises would be designated as an IP.
• If the case definition is not confirmed but suspicion remains, the premises would continue to be designated as an SP.
• If the case definition is ruled out, the premises would receive the qualifier AN. However, if it is located in the RA, it would be designated as an ARP. If it is located in the CA, it would be designated as a POR.

Trace premises

Trace premises (TP) is a temporary designation applied to premises that contain a susceptible animal(s) that tracing indicates may have been exposed to an infected animal(s), a vector or contaminated animal products, wastes or things, and that requires investigation. Every effort should be made to resolve the status of a TP as soon as possible. Exposure may be via aerosol, especially if the premises is contiguous with an IP, or via fomites. The investigation may produce the following outcomes:
• If the case definition is met, the premises would be designated as an IP.
• If it appears highly likely, as a result of a risk assessment of the specific epidemiological situation, that the TP contains an infected animal(s) or contaminated animal products, wastes or things, it would be designated as a DCP.
• If the trace proves to be insignificant, the premises would receive the qualifier AN. However, if it is located in the RA, it would be designated as an ARP. If it is located in the CA, it would be designated as a POR.

When classifying a premises as either an IP, DCP, SP or TP, the jurisdictional chief veterinary officer will consider the above information as well as disease-specific information contained in the relevant AUSVETPLAN Disease Strategy, with the objective of minimising the spread of disease.

Saleyards could be involved in an EAD incident under one of three circumstances:
• The disease is first suspected during a sale at a saleyard.
• Trace-back is made to a saleyard where stock are currently held.
• Trace-back is made to the saleyard when there are no animals at the yard.

5.1.2 Priorities when investigating an infected or dangerous contact premises

When an IP or DCP is being investigated, the priority should be to minimise the risk of disease spread within and beyond the saleyard, and from the source of suspect stock and contacts. The aim should be to achieve these objectives with the least possible disruption to normal saleyard activity. Key saleyard staff should be consulted and kept informed.

To aid in risk assessment and the subsequent decision-making process, a map or plan of the saleyard should be obtained. This should include details of pens, laneways, entry points and drainage. The saleyard should be secured as soon as possible by controlling entry and exit points. All people present at the saleyard should be informed of events and their cooperation sought. The existing public address system should be used (if available), or one could be set up.

5.1.3 Handling animals and animal products

Affected suspect animals would be examined by animal health staff and quarantined, preferably in an area well isolated from other stock, pending diagnosis. A diagnostic team may be called in, and specimens may need to be submitted to a laboratory. Depending on the nature and extent of the suspected disease, initial risk assessment could then begin (see Section 2.6.2 for information on identifying the likely mechanisms for disease spread, and prioritising tracing requirements).
Ownership and recent history of the suspect animals and other high-risk contacts should be established. A list of all vendors at the sale should be obtained and the location of their stock marked on the plan of the saleyard. Purchasers and the intended fate of the animals should be listed.

Depending on anticipated delay until a definitive diagnosis is received, arrangements should be made to provide feed, water and shelter, as necessary (see Appendix 2).

Depending on the circumstances, the sale may be allowed to proceed, but movement of people and stock onto and off the premises may be prevented. Entry into and exit from the saleyard should be controlled to minimise the risk of infection being carried from the saleyard.

5.2 Continued operation of an enterprise classified as an infected or dangerous contact premises

5.2.1 Deciding whether to suspend or stop a sale
Issues to consider when deciding whether to suspend or stop a sale include:

- the disease suspected, the mechanisms of its spread, and the risk that it will spread to other animals
- the nature of the sale (eg will all stock be sold for slaughter, or will they be dispersed to other premises?).

The saleyard management and key staff would be involved in the decision-making process, including consideration of legal procedures and implications. The decision will ultimately be informed by the jurisdictional animal health authority.

5.2.2 Issues to consider if a sale is to be stopped
Issues to consider if the sale is to be stopped include:

- the ownership of animals that have already been sold — do existing sales stand or should all be cancelled?
- the fate of animals should diagnosis prove negative — can the sale recommence (ie will buyers be willing and available)?
- the choice of the person to make a public announcement regarding the suspected disease outbreak (eg saleyard manager, chairman of selling agents’ association, gazetted inspector of stock or government veterinarian) — considerations include local credibility and authority
- the announcement to be made from a written statement prepared by the chief veterinary officer.

5.3 Elimination of the disease agent

5.3.1 Animals
In the event of an EAD incident, the saleyard would be quarantined. It is likely that clinical cases, animals from the same property of origin, and animals that have had close contact with clinical cases in the saleyard or during transport to the sale would be valued and destroyed as soon as possible. Refer to the relevant Disease Strategy for policy information. Carcasses would be disinfected before their disposal. Destruction would not be delayed if there were any problems with valuation (see the Valuation and Compensation Manual).
The operational aspects of destruction of stock in a saleyard and the disposal of carcasses are addressed in a general sense in the Destruction of Animals and Disposal manuals. Some aspects of particular relevance to saleyards include the following.

Destruction

- Proximity of other businesses and people will need to be considered. Care will be required to prevent injuries and damage associated with using firearms — in particular, bullets ricocheting from hard surfaces. Captive-bolt pistols may be preferable.
- Screening from public viewing or an extended quarantine area may be appropriate.
- The logistics of destroying large numbers of stock may require considerable ingenuity to set up suitable restraining areas that allow easy stock access and carcass removal.

Disposal

- Because many saleyards are close to built-up areas, it is likely that carcasses will need to be transported some distance to suitable burial or cremation sites.
- In arranging transport of carcasses and other material to these sites, care will need to be taken to prevent leakage of potentially infective material. Sealed, leakproof trucks or adapted tippers (e.g., with plastic lining and plastic covers) will be required.
- Carcasses and other material may need to be sprayed with suitable disinfectant before being transported.
- A system will be required for ensuring that vehicles and loads reach their destination. Consideration should be given to preventing public access to the transit route until the task, including any necessary cleaning and disinfection, has been completed.

5.3.2 **Manure and effluent**

Manure is sometimes collected from saleyards for use by home gardeners or commercial horticulturalists. Although this practice would present a very low risk, it would not be permitted if the saleyard were declared an IP.

5.3.3 **Stockfeed**

At some saleyards, stockfeed will be held for use on the premises. This material would be included in any quarantine, assessed for risk, and subsequently disinfected or destroyed.

5.4 **Salvaging animals for slaughter**

Subject to a thorough assessment of the level of direct and indirect contact between infected and susceptible livestock by the jurisdictional animal health authority, it may be possible to identify large groups of animals in a saleyard that can be salvaged for slaughter in an abattoir.

The ability to economically use the meat will be an important consideration. Awareness of the World Organisation for Animal Health (OIE) recommendations for trade in meat and animal products, and the attitudes of trading partners will be crucial to decision making. This approach assumes that it can be established with a high degree of confidence that:

- infected, incubating and other high-risk animals have been identified and destroyed immediately
- a group of low-to-medium-risk stock has been identified that has had no direct contact with infected animals and was penned some distance from them; the group may or may not have passed through laneways or scales after the infected animals.
This group of low-to-medium risk stock could be sent for slaughter at an abattoir, provided that the following conditions are met:

- An appropriate abattoir exists nearby, and the stock may be legally transported to it.
- Stock can be transported to the abattoir without close contact with other stock. The stock vehicle should be escorted to ensure that animals reach their prescribed destination. Relevant considerations include the road surface, driving conditions, vehicle types, the terrain and farming systems through which the stock will pass, and public perceptions (especially members of the public who are involved in the livestock industry).
- The abattoir has the capacity to kill all the livestock within the incubation period of the disease, including allowing for disruptions due to breakdowns and possibly industrial action.
- The abattoir can be satisfactorily decontaminated.
- All people concerned (including abattoir management) understand the consequences of slaughtering animals from an IP or DCP on the abattoir’s ability to operate, particularly in the case of export abattoirs. These consequences would be influenced by the OIE recommendations for trade, and trading partner attitudes to products from salvage slaughtered animals. A possible consequence is the prolonging of restrictions on an export abattoir because of its use for salvage slaughter of possibly infected livestock.
- The meat, byproducts and effluent can be distributed satisfactorily without the risk of further disease spread.
- The public will accept meat and other products from the abattoir.

In practice, it is very likely that a nil-risk approach would be taken to animal disposal early in an outbreak of disease — that is, there will be immediate destruction on site, and disposal of the carcasses at a site near the saleyard. Should an outbreak continue for some time, this approach may need to be reviewed and salvage of meat and byproducts attempted, because of public and industry perceptions about seemingly needless slaughter and waste. At all times, the most important factors to keep in mind are:

- the relative risk of spread of the disease via various livestock and products emanating from a saleyard
- the high cost of the loss of Australia’s export trade in livestock and livestock products compared with the operational costs needed to eradicate the disease.

Other factors that must be taken into account in assessing the risk of spread of disease from saleyards include:

- the length of time that animals are exposed to infective sources, taking into account saleyard practices such as arrival times in relation to curfews and livestock selling systems; practices requiring animals to enter the saleyard some hours before sale will increase the possibility of disease being spread between animals
- the number of actual and potential excretors of virus that have been in the saleyard (ie infection challenge) — since the chances of infection increase with increasing doses of infective material, the greater the number of infective animals, the higher the likelihood that disease will be transmitted.

The above guidelines are clearly appropriate for stock assembled for sale for slaughter. Where commercial stock have been assembled for sale for breeding, growing out or finishing (ie ‘store’ sales), the salvage value of the meat may be less because of their poorer body condition; however, the same principles should be applied.
Detection of an EAD in a saleyard may present some unique problems in relation to ownership of stock and valuation (see Appendix 3).

The incubation period of an infectious disease is important in identifying potential risks associated with animals and their products, and is an aid to prioritising activity. It may be justifiable to retain animals in quarantine for longer than the incubation period when stock are of unique genetic merit and/or have had negligible chance of exposure to disease. During this time, they would be inspected frequently.

It is most unlikely that salvage of animals for slaughter at an abattoir would be accepted in the early phases of an FMD outbreak. However, it may be applicable if a less infectious EAD is involved or an FMD outbreak has persisted for some time. Special conditions would apply, and substantial costs would be incurred by the owner.

5.5 Decontamination

The Decontamination Manual provides details of the operational aspects of decontamination.

5.5.1 Livestock

Options for eliminating or managing contamination by livestock in saleyards include:

- slaughter and disposal of animals at the saleyard — this may be associated with problems in disposing of carcasses, particularly when saleyards are situated in built-up areas
- salvage slaughter (see Section 5.4)
- quarantine of animals at the saleyard and frequent observation for development of clinical signs. The period of observation would have to extend for at least one incubation period, which could create welfare problems with regard to adequate feeding and watering, and maintenance of a clean environment (see Appendix 2). The disease involved would influence the adoption of this option. For a disease that results in the production of large amounts of infectious material, holding animals could potentially set up a large ‘incubator factory’, with massive amounts of infectious material being released when a large proportion of the animals contract the disease. In this case, the proximity of other susceptible species should be considered.

Compensation will be available for livestock and equipment destroyed during the control of diseases included under the EAD Response Agreement. For further details, refer to the Valuation and Compensation Manual.

5.5.2 Stockfeed

Amounts of animal feed held at saleyards vary. Some feed may be unaffected, some may be safely decontaminated, and other feed might have to be destroyed. The destruction of large quantities of animal feed is expensive, but the cost of manual labour to treat the feed could outweigh the benefits of keeping it.

Depending on the disease involved, the potential level of stockfeed contamination, and the amount of feed involved, options for its decontamination include:

- burning, burying or composting
- feeding to stock on hand
- disinfection and/or destruction of the outer layers of the stored feed and retention of the remainder for feeding to stock on hand.
For some disease agents, keeping the feed or treating it may be judged as too great a risk. However, since most EAD viruses are inactivated with time and certain conditions of temperature and humidity, it might be possible to quarantine feed for a period (as determined by epidemiology) and then use it later with confidence.

5.5.3 Discharges

Action taken to dispose of discharges, such as manure and urine, from saleyards will depend on the disease involved and the estimated degree of contamination of the effluent (see also Section 4.3.4). The level of contamination will be influenced by the species involved, the estimated number of excreting animals and the length of time that they have been excreting into the saleyard environment. For some diseases, effluent from saleyards will present little risk because infectious agents are not excreted in either faeces or urine.

If saleyard environments and effluent are likely to be heavily contaminated, surface spraying of yard and laneway surfaces with a suitable disinfectant, and disposal of the effluent by burial or composting, may be appropriate. If the volume is not great, an acid disinfectant spray should be used, as manure tends towards acid pH and this can be increased by acid treatments. Hypochlorite has limited effectiveness in the presence of high organic loads.

Use of water for decontamination should be minimised because the water itself must be correctly handled to minimise the likelihood of disease transmission.

Treated manure and infectious wastes such as soil and bedding should be removed, and buried or composted in a pit.

If high levels of contamination are unlikely, the most appropriate strategy might be to secure the effluent area to prevent direct contact by susceptible species, and allow decontamination by the natural processes of aerobic and/or anaerobic digestion, exposure to sunlight and time.

5.5.4 Vehicles

A wide range of potential routes can lead to contamination of vehicles. The likelihood of susceptible stock becoming infected from contact with contaminated vehicles will depend on the class of vehicle and the disease.

Livestock transports

The livestock transports that carried the suspect livestock from the property of origin represent the highest risk and should be subjected to meticulous cleaning and disinfection (see the Decontamination Manual).

Other livestock transports at the saleyard are unlikely to be contaminated, unless their drivers pick up infectious material (e.g., manure on their boots) from infected areas in yards or by aerosol spread. Although the likelihood of contamination of these transports with infectious agents is not great, where there is the possibility of close and prolonged exposure to susceptible stock at the saleyard, all livestock vehicles should be subjected to a thorough wash, preferably using a low-volume, low-pressure soak with appropriate disinfectant, followed by high-volume, high-pressure cleaning with water.

Following such decontamination, a period of quarantine for the vehicle may be appropriate, to prevent the vehicle carrying susceptible species for the specified period. This might be practical, given the likelihood of a standstill on stock movements and no demand for trucks.
Transports wishing to leave the RA (eg to return to a base outside the RA) will require a more meticulous decontamination, similar to that for the vehicles that transported infected stock.

Farmers’ vehicles

Farmers’ vehicles may have come into contact with stock. These vehicles would be a lower risk than most stock transports because of a lower likelihood of intimate contact with susceptible species for prolonged periods. Any cleaning and disinfection should focus on the high-risk parts of the vehicle. Basic cleaning, including the removal of all remnants of hay and stockfeed, with a general external wash and thorough clean-up of the interior, might be adequate. This could be done at the saleyard or at a local car wash under supervision.

Livestock agents’ vehicles

Vehicles belonging to livestock agents and yard workers might have a higher risk of contamination, particularly through contaminated footwear. However, the risk of contact with susceptible animals will generally be less than for farmers’ vehicles, unless the agent or yard worker also owns and operates a farm. These vehicles should be treated in a similar fashion to farmer-owned vehicles.

Other vehicles

Vehicles belonging to livestock buyers and the general public are in the lowest risk category. A brief hose-down, or no action, might be sufficient. Decontaminating the vehicle wheels by driving through a disinfectant bath could be considered.

If feed vehicles are present at the saleyard, they can be treated similarly to farmers’ vehicles or livestock transports, depending on the assessed degree of exposure.

5.5.5 Equipment and materials

Types and amounts of equipment and materials at saleyards are usually limited. They might include canes, goads, branding paint and brands. Brooms, scrapers, wheelbarrows and tractors may also be held at the saleyard for yard cleaning and maintenance. The appropriate degree of decontamination will depend on the level of exposure of the materials to sources of infection. Livestock handling equipment could have the greatest potential for exposure. Refer to the Decontamination Manual for information relating to field equipment. Compensation may be payable for equipment damaged or destroyed during decontamination (see the Valuation and Compensation Manual).

5.5.6 Personnel

All personnel should be informed of the required actions and the reasons for them, both verbally and using a short information sheet. For more details, see Appendix 4.

High-risk personnel

High-risk personnel present at saleyards include transport drivers, agents, yard workers, veterinarians and owners of infected stock. They should shower/bathe and change their clothes and footwear before returning home. This could be done at the saleyard or at a nearby motel, hotel or sporting complex. Clothing and footwear must be decontaminated before being returned to owners.

It is recommended that high-risk personnel have no contact with other stock for a period of time recommended by the relevant Disease Strategy.
Medium-risk personnel
Medium-risk personnel include farmers and livestock buyers. They should follow the same procedures as high-risk personnel.

Low-risk personnel
Personnel with the lowest risk of spreading disease include canteen staff and the general public. These people should disinfect their footwear before leaving the saleyard. They should be allowed to shower/bathe, change and wash clothes elsewhere.

5.5.7 Vermin and feral animals
Rodents, foxes and cats are the vermin and/or feral animals most likely to be associated with saleyards. Depending on the disease, these animals probably represent a low risk of spreading disease if they gain access to waste material or discharges, but should be considered as part of the decontamination process (with a low priority). Dogs and horses associated with stock handling might also be present in saleyards and require consideration. In some cases, wandering stock may need to be considered. A program should be in place to ensure quarantine security.

5.5.8 Buildings and structures
Buildings and structures might include:

- yards — surfaces could be earth, cobblestone or concrete
- fences — wood or steel
- shelters for stockfeed and water troughs
- liveweight scales — mainly metal, but could be of intricate construction
- shelters and seating for personnel
- canteen and office complex
- machinery and maintenance shed
- stockfeed storage sheds.

All these areas must be assessed for their risk in spread of disease and assigned a priority for decontamination. Areas in which infected stock spend most time are associated with the highest risk, followed by areas through which the stock passed, such as unloading ramps, laneways, scales, and pregnancy-testing races.

High-risk areas
High-risk areas require a preliminary spray with suitable disinfectant, using low volume and low pressure. It might be possible to use the yard sprinkler system. This should be followed by mechanical cleaning and disposal of solid wastes by burial or composting. A final high-volume, high-pressure wash-down with water should be considered. Refer to the Decontamination Manual.

Earthen yards
For high-risk areas, earthen floors in buildings may need to be broken up and soaked in disinfectant (see the Decontamination Manual).
Permanent surfaces
Concretions and encrustations of material on permanent surfaces are to be removed. This is most easily achieved by low-pressure spraying with water, or water and detergent, using steam cleaners, or by scraping with hand tools. Particular attention should be paid to corners and wall-floor junctions. The surfaces are then washed down using a high-pressure system and plain water.

Feed
All feedstuff considered contaminated must be removed, and buried or composted after valuation. Feeding and water troughs will be emptied and cleaned out.

Low-risk areas
For lower risk areas, a preliminary spray with suitable disinfectant and/or a surface scrape and disposal of surface material may be all that is required, followed by the prevention of stock access for an appropriate time.

Other areas
The amount of cleaning and disinfection required depends on the level of risk. A preliminary spray with suitable disinfectant and mechanical cleaning might be needed. Structures that cannot be adequately decontaminated may need to be removed and buried, with compensation paid (if available).

5.6 Other considerations
Consideration will need to be given to quarantining and securing of premises, including holding yards, effluent disposal areas and truck-wash areas. The most difficult stage will be implementing quarantine movement controls upon first suspicion of disease. Reliable and rapid risk assessment is essential, with a focus on priority areas. The least possible disruption to normal movement patterns will help to maintain public cooperation, while minimising risk.

5.7 Tracing requirements
Tracing should focus on identifying the source(s) of infection and possible spread of infection via movement of stock, vehicles and people. Considerations include the following:

- Infected livestock (and susceptible livestock that have had prolonged, intimate, direct contact or prolonged, indirect contact with affected livestock) are the highest priority.
- The time of detection of infected livestock, in relation to when other stock have assembled and/or disseminated, will influence priorities and the magnitude of the task.
- Detected cases may not be the index case. Therefore, other livestock at the saleyard might have been exposed to the index case before their arrival at the saleyard and might be incubating disease and/or excreting the disease agent.
- A starting point in the tracing procedure is to identify the transport and operator that carried the livestock, and all subsequent properties visited by, and livestock exposed to, the transport operator.
- Tracing from the infected premises could identify the source of infection, which will then generate another round of tracing.

Other tracing possibilities that potentially could be important in dissemination of disease include:

- stock that have already left the sale (sold or returned to properties)
• other stock that were in yards and have left (eg resting stock or stock being transhipped)
• trucks and other equipment that have delivered stock and left the saleyard
• trucks that have been to other properties after their first delivery (a list of these properties will be required)
• people who visited the saleyard earlier in the day, or the evening before, and have since left
• other animals, such as dogs or horses, in the area — these should be confined.

It is important that documents and systems (eg the NLIS database) are kept up to date to ensure that accurate tracing can occur.

5.8 Proof of freedom

Proof of freedom from disease must meet both Australian veterinary requirements and the relevant OIE provisions. Disease-specific information on proof of freedom is available in the relevant Disease Strategy.

Necessary steps are standard cleaning and disinfection procedures, followed by a stock-free period (which will vary with the disease), and then possible placement of sentinel animals in the most highly contaminated area of the premises. This will be followed by close observation for a period longer than the incubation period (see the relevant Disease Strategy for more detail).

5.9 Media and public relations

Veterinarians, farmers, saleyard staff, transporters and all those involved in the EAD incident need to be very careful about providing information to the media, either directly or indirectly. Communication with the media should address only activities that directly affect the saleyard and transport vehicles. General inquiries about the particular disease or the control activities that are being undertaken in the area must be directed to the Public Relations Unit in the LCC (see the Public Relations Manual). Maintaining an appropriate channel of communication with the media is an important function of the LCC. This is made very difficult if other information is coming from elsewhere that may appear to conflict with advice given by the LCC.
6 Transport

The occurrence of a serious emergency animal disease (EAD) affecting sheep, cattle or pigs would have a significant impact on the livestock transport industry. The nature of the impact will depend on the disease involved, the regions in which the disease is detected and the ability to quickly implement zoning of the affected area. Livestock transport operations in the restricted area (RA) will be severely curtailed, as all but essential livestock movements will be prohibited until the outbreak is brought under control. Stock movements in the surrounding control area (CA) will be less disrupted; however, a range of precautions will still be implemented to minimise the risk of spread of disease.

Outlined below are the principles that form the basis of precautions and restrictions applying to the transport of livestock in the event of a disease emergency.

6.1 Nature of the disease

Diseases such as foot-and-mouth disease (FMD) are spread mainly by the movement of livestock and the exposure of susceptible animals to infected animals or contaminated things. Other diseases, such as bluetongue, are transmitted by insect vectors, although livestock movements might be responsible for spreading the disease over long distances.

Information on each disease and the significance of saleyards and transport in its spread is provided in Section 2.2. Table 2.4 provides additional information on the risk of spread of each disease, and Table 2.5 provides information on the persistence of FMD under a range of conditions. Figure 2.1 provides additional information on how FMD can spread.

6.2 Declaration of infected, dangerous contact and suspect premises, and restricted and control areas

Premises and area declarations depend on the degree of risk of infection. Infected premises (IPs), where disease is confirmed or suspected, will be subject to severe restrictions. Movement controls will be imposed in RAs to reduce the risk of disease spread from premises in high-risk areas where disease has not yet been detected. The CA will generally be a low-risk area, with some controls, in case the disease has spread wider than first suspected. Because the controls in RAs could be quite severe, the RA will be made as small as possible (without compromising disease eradication efforts), to minimise impacts on the livestock industry and general community.

This approach will rely heavily on the cooperation of many people, including livestock transporters. It is possible that there will be several RAs surrounding IPs, with each RA (or group of RAs) surrounded by a CA, which could initially involve the whole state or territory. Area boundaries will be continually modified in the light of new knowledge; areas will initially be large when least is known about the disease, and progressively reduced as the situation is clarified.

6.3 Animal movements

A general principle that will be applied is that animals may not move from an area of low health status (high risk) to an area of higher health status (low risk). On the other hand, animals may be allowed to move from an area of higher health status to an area of lower health status, provided that the movement is essential and does not result in more susceptible animals being exposed to infection. Restrictions will depend on the disease involved. The following general movements and
restrictions may apply in an EAD event, but information on movements and permits will be made available by animal health authorities during the response:

- animals may be transported to an abattoir for immediate slaughter
- saleyards will not be allowed to operate in an RA
- limited farm-to-farm movement may be allowed if movements are shown to be essential and the stock can be held in quarantine on the new property for at least 14 days (the generally accepted maximum incubation period for FMD)
- in a CA, stock movements from farm to farm, farm to saleyard, and farm to abattoir may be permitted under specified conditions
- livestock transporters should contact local government veterinarians or gazetted inspectors of stock, or the local disease control centre to check on the relevant restrictions before picking up livestock; in most cases, a movement permit system will apply.

6.4 Hygiene

Maintaining excellent personal hygiene and clean transports will be extremely important during an EAD incident. This will help minimise the risk of spread of disease by contaminated footwear, clothing and vehicles and, equally importantly, assure livestock owners and the general public that transporters are doing all within their power to minimise the risk of spread of disease. Dogs and dog pens on transports may require special consideration.

6.5 Records

Good records detailing property visits, livestock pick-ups and deliveries will be required to enable rapid tracing of movements in the case of suspicion of disease. Databases for the National Livestock Identification System (NLIS) and documents such as National Vendor Declarations or Animal Health Statements should be used to assist with tracing and epidemiological investigation.

6.6 Cooperation

The cooperation of livestock transporters will be essential to effective eradication of the disease, while minimising problems. In particular, early reporting of suspected disease, good record keeping and making all relevant information available to animal health staff will be very helpful. Livestock transporters should not hesitate to contact local animal health authorities with relevant information and for advice.

6.7 Recognition of disease and early reporting

Livestock transporters may well be the first people to see an EAD. Therefore, drivers should be trained to recognise the clinical signs of the major EADs and should report any abnormal signs to local animal health staff. Livestock transporters should not hesitate to report a suspect disease.

6.8 Action when disease is suspected

The main actions for a transport operator to follow if an EAD is suspected are as follows:
• Contact a government veterinarian immediately — use the Emergency Animal Disease Watch Hotline (telephone 1800 675 888), if appropriate.

• Do not remove any livestock or livestock product from the premises, and discourage others from doing so; anyone who does not comply might be committing an offence.

• Keep animals that are suspected of being infected separate from others.

• If you must leave the premises, disinfect yourself, your equipment and your vehicle; leave any potentially contaminated materials on the premises or transport them in sealed plastic bags.

• Do not enter a property with other susceptible livestock until you have discussed the situation with a government veterinarian.

• Minimise risk of further spread of disease (eg ensure that you have no contact with other susceptible stock).
Appendix 1 Diseases covered by the Emergency Animal Disease Response Agreement

Table A1.1 Diseases covered under the EAD Response Agreement (January 2011)*

<table>
<thead>
<tr>
<th>Disease</th>
<th>Category</th>
<th>Agent</th>
<th>Human health risk</th>
<th>Main species affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>African horse sickness</td>
<td>3</td>
<td>V</td>
<td>Nil</td>
<td>Horses, dogs</td>
</tr>
<tr>
<td>African swine fever</td>
<td>3</td>
<td>V</td>
<td>Nil</td>
<td>Pigs, warthogs</td>
</tr>
<tr>
<td>Anthrax (major outbreaks)</td>
<td>3</td>
<td>B</td>
<td>Yes</td>
<td>All mammals</td>
</tr>
<tr>
<td>Aujeszky’s disease</td>
<td>4</td>
<td>V</td>
<td>Nil</td>
<td>Pigs, cattle, sheep, goats, dogs</td>
</tr>
<tr>
<td>Australian bat lyssavirus</td>
<td>1</td>
<td>V</td>
<td>Yes</td>
<td>Flying foxes, insectivorous bats</td>
</tr>
<tr>
<td>Avian influenza (highly pathogenic)</td>
<td>3</td>
<td>V</td>
<td>Strain-dependent</td>
<td>Poultry</td>
</tr>
<tr>
<td>Bluetongue (disease in sheep)</td>
<td>3</td>
<td>V</td>
<td>Nil</td>
<td>Sheep, goats, cattle, buffaloes, camels, antelopes, deer</td>
</tr>
<tr>
<td>Borna disease</td>
<td>4</td>
<td>V</td>
<td>?</td>
<td>Horses, sheep</td>
</tr>
<tr>
<td>Bovine spongiform encephalopathy</td>
<td>2 Prion</td>
<td></td>
<td>Yes</td>
<td>Cattle, cats</td>
</tr>
<tr>
<td>Bovine tuberculosis due to Mycobacterium bovis</td>
<td>3</td>
<td>B</td>
<td>Yes</td>
<td>Cattle, buffalo, deer, camels, rhinoceros, elephants, giraffe</td>
</tr>
<tr>
<td>Brucellosis (due to Brucella abortus)</td>
<td>2</td>
<td>B</td>
<td>Yes</td>
<td>Cattle, horses</td>
</tr>
<tr>
<td>Brucellosis (due to Brucella melitensis)</td>
<td>2</td>
<td>B</td>
<td>Yes</td>
<td>Goats, sheep</td>
</tr>
<tr>
<td>Classical swine fever</td>
<td>3</td>
<td>V</td>
<td>Nil</td>
<td>Pigs</td>
</tr>
<tr>
<td>Contagious bovine pleuropneumonia</td>
<td>3</td>
<td>M</td>
<td>Nil</td>
<td>Cattle</td>
</tr>
<tr>
<td>Contagious equine metritis</td>
<td>4</td>
<td>B</td>
<td>Nil</td>
<td>Horses, donkeys</td>
</tr>
<tr>
<td>Dourine</td>
<td>4</td>
<td>P</td>
<td>Nil</td>
<td>Horses</td>
</tr>
<tr>
<td>East coast fever</td>
<td>4</td>
<td>P</td>
<td>Nil</td>
<td>Cattle</td>
</tr>
<tr>
<td>Encephalitides (tick-borne) (louping ill)</td>
<td>3</td>
<td>V</td>
<td>Rare</td>
<td>Sheep, cattle, horses, pigs, deer</td>
</tr>
<tr>
<td>Epizootic lymphangitis</td>
<td>4</td>
<td>F</td>
<td>Rare</td>
<td>Horses</td>
</tr>
<tr>
<td>Equine babesiosis</td>
<td>4</td>
<td>P</td>
<td>Nil</td>
<td>Horses, donkeys, mules</td>
</tr>
<tr>
<td>Equine encephalomyelitis (western, eastern and Venezuelan)</td>
<td>1</td>
<td>V</td>
<td>Yes</td>
<td>Horses, donkeys, mules, poultry, emus</td>
</tr>
<tr>
<td>Equine encephalitis</td>
<td>4</td>
<td>V</td>
<td>Nil</td>
<td>Horses</td>
</tr>
<tr>
<td>Equine influenza</td>
<td>4</td>
<td>V</td>
<td>Rare</td>
<td>Horses</td>
</tr>
<tr>
<td>Foot-and-mouth disease</td>
<td>2</td>
<td>V</td>
<td>Rare</td>
<td>All cloven-hoofed animals, elephants</td>
</tr>
<tr>
<td>Getah virus</td>
<td>4</td>
<td>V</td>
<td>Nil?</td>
<td>Horses (humans, monkeys, cattle, buffalo, goats, dogs, rabbits, fowl, heron — can be infected subclinically)</td>
</tr>
<tr>
<td>Glanders</td>
<td>2</td>
<td>B</td>
<td>Yes</td>
<td>Horses, donkeys, mules, cats, dogs</td>
</tr>
<tr>
<td>Haemorrhagic septicaemia</td>
<td>4</td>
<td>B</td>
<td>Nil</td>
<td>Buffalo, bison, cattle</td>
</tr>
<tr>
<td>Heartwater</td>
<td>4</td>
<td>R</td>
<td>Nil</td>
<td>Cattle, water buffalo, sheep, goats</td>
</tr>
<tr>
<td>Hendra virus</td>
<td>2</td>
<td>V</td>
<td>Yes</td>
<td>Horses</td>
</tr>
<tr>
<td>Infectious bursal disease (hypervirulent form)</td>
<td>4</td>
<td>V</td>
<td>Nil</td>
<td>Poultry</td>
</tr>
<tr>
<td>Japanese encephalitis</td>
<td>1</td>
<td>V</td>
<td>Yes</td>
<td>Pigs, horses</td>
</tr>
<tr>
<td>Disease</td>
<td>Category</td>
<td>Agent</td>
<td>Human health risk</td>
<td>Main species affected</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
<td>-------</td>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>Jembrana disease</td>
<td>4</td>
<td>V</td>
<td>Nil</td>
<td>Bali cattle</td>
</tr>
<tr>
<td>Lumpy skin disease</td>
<td>3</td>
<td>V</td>
<td>Nil</td>
<td>Cattle, buffalo</td>
</tr>
<tr>
<td>Maedi–visna</td>
<td>4</td>
<td>V</td>
<td>Nil</td>
<td>Sheep, goats</td>
</tr>
<tr>
<td>Menangle virus (porcine paramyxovirus)</td>
<td>3</td>
<td>V</td>
<td>Yes</td>
<td>Pigs, flying foxes</td>
</tr>
<tr>
<td>Nairobi sheep disease</td>
<td>4</td>
<td>V</td>
<td>Yes</td>
<td>Sheep, goats</td>
</tr>
<tr>
<td>Newcastle disease</td>
<td>3</td>
<td>V</td>
<td>Rare</td>
<td>Poultry</td>
</tr>
<tr>
<td>Nipah virus</td>
<td>1</td>
<td>V</td>
<td>Yes</td>
<td>Pigs, flying foxes (dogs, cats — cannot be excluded as sources of infection)</td>
</tr>
<tr>
<td>Peste des petits ruminants</td>
<td>2</td>
<td>V</td>
<td>Nil</td>
<td>Sheep, goats (cattle, pigs — might be affected, either subclinically or very mildly)</td>
</tr>
<tr>
<td>Porcine reproductive and respiratory syndrome</td>
<td>4</td>
<td>V</td>
<td>Nil</td>
<td>Pigs</td>
</tr>
<tr>
<td>Potomac fever</td>
<td>4</td>
<td>R</td>
<td>Nil</td>
<td>Horses</td>
</tr>
<tr>
<td>Pulmonary adenomatosis</td>
<td>4</td>
<td>V</td>
<td>Nil</td>
<td>Sheep, goats</td>
</tr>
<tr>
<td>Rabies</td>
<td>1</td>
<td>V</td>
<td>Yes</td>
<td>All mammals</td>
</tr>
<tr>
<td>Rift Valley fever</td>
<td>2</td>
<td>V</td>
<td>Yes</td>
<td>Cattle, sheep, goats, dogs</td>
</tr>
<tr>
<td>Scrapie</td>
<td>3</td>
<td>Prion</td>
<td>Nil</td>
<td>Sheep, goats</td>
</tr>
<tr>
<td>Screw -worm fly</td>
<td>2</td>
<td>P</td>
<td>Yes</td>
<td>All mammals</td>
</tr>
<tr>
<td>Sheep pox and goat pox</td>
<td>2</td>
<td>V</td>
<td>Nil</td>
<td>Sheep, goats</td>
</tr>
<tr>
<td>Sheep scab</td>
<td>4</td>
<td>P</td>
<td>Nil</td>
<td>Sheep</td>
</tr>
<tr>
<td>Surra</td>
<td>4</td>
<td>P</td>
<td>Nil</td>
<td>Horses, cattle, deer, camels, dogs, cats</td>
</tr>
<tr>
<td>Swine influenza</td>
<td>4</td>
<td>V</td>
<td>Yes</td>
<td>Pigs, birds, humans, dogs, cats</td>
</tr>
<tr>
<td>Swine vesicular disease</td>
<td>3</td>
<td>V</td>
<td>Nil</td>
<td>Pigs</td>
</tr>
<tr>
<td>Teschen disease</td>
<td>4</td>
<td>V</td>
<td>Nil</td>
<td>Pigs</td>
</tr>
<tr>
<td>Transmissible gastroenteritis</td>
<td>4</td>
<td>V</td>
<td>Nil</td>
<td>Pigs, dogs</td>
</tr>
<tr>
<td>Trichinosis</td>
<td>3</td>
<td>P</td>
<td>Yes</td>
<td>All mammals</td>
</tr>
<tr>
<td>Vesicular exanthema</td>
<td>3</td>
<td>V</td>
<td>Nil</td>
<td>Pigs</td>
</tr>
<tr>
<td>Vesicular stomatitis</td>
<td>2</td>
<td>V</td>
<td>Yes</td>
<td>Cattle, horses, pigs, sheep, goats</td>
</tr>
<tr>
<td>Wesselsbron disease</td>
<td>4</td>
<td>V</td>
<td>Yes</td>
<td>Sheep, goats, humans</td>
</tr>
</tbody>
</table>

B = bacterium; F = fungus; M = mycoplasma; P = parasite; R = rickettsia; V = virus

Information about the EAD Response Agreement can be found in the Summary Document and at www.animalhealthaustralia.com.au/programs/emergency-animal-disease-preparedness/ead-response-agreement
Appendix 2 Holding of livestock

Issues to be considered if livestock are to be held at saleyards are summarised below.

Animal welfare

Animal welfare issues to consider include:

- provision of water, feed and shelter
- species, age, class and physiological status of animals
- animal health monitoring
- the special needs of bobby calves, recently weaned young stock, lactating females, heavily pregnant females, and stock that are very thin, old or weak
- the anticipated delay before stock may be moved or destroyed; a diagnosis will usually be available within 24 hours, but delays of up to 3 days might occur
- relevant codes of practices and legislation.

Environmental factors

Environmental factors to consider include saleyard structure and facilities, such as:

- availability and quality of water for stock
- effluent disposal system — affects where and what stock can be fed (eg hay might block many effluent disposal systems); and whether the system has the capacity to handle effluent from the number of stock to be held for the envisaged period
- nature of yard surfaces — hard stone or concrete surfaces will result in lameness and downer stock (heavy stock are most susceptible); earthen surfaces are less stressful but may result in dust and mud problems
- availability of appropriate shelter for the classes of stock involved.

Climate

Extremes of weather (eg very hot, or cold, wet and windy) will create stress on livestock and increase the importance of provision of water, feed and shelter.

Disease risk

Source of infection to neighbouring premises

Issues relating to the risk of spread of infection to other premises include:

- the nature of disease suspected
- mechanisms of disease spread; for example
 - windborne spread (of greatest concern for FMD)
 - transmission by insects
– spread in effluent
– spread by escaped livestock and feral animals

• proximity and nature of at-risk premises (eg feedlots, piggeries, dairies, abattoirs or general grazing properties)
• whether the high density of stock will generate high concentrations of infective material or organisms.

Ability to decontaminate premises

Issues to consider relating to decontamination of the premises include:

• effect of holding stock for an extended period on the ability to effectively decontaminate the premises — for example, leaving stock on earthen yards for several days in hot conditions could result in a layer of mud that may be difficult to decontaminate

• whether holding of stock will result in expression and dissemination of endemic diseases such as salmonellosis, colibacillosis, pink eye and respiratory tract diseases.

Logistics

The logistics of obtaining and dispensing to livestock adequate supplies of safe, appropriate feed and water should be considered. Feeding 1000 bobby calves will be a test of logistics and the patience of all concerned.

Costs

Costs that will be incurred include:

• feedstuffs
• labour — for procuring and dispensing feedstuffs, and cleaning and maintenance of yards
• veterinary costs for livestock that become ill.

These costs may be covered if the disease is included in the Emergency Animal Disease Response Agreement.
Appendix 3 Valuation and ownership of stock at saleyard

The detection of an EAD in a saleyard could present some unique problems in relation to ownership of stock and valuation.

Ownership

Depending on when a sale is halted, stock may belong to either the vendors or the buyers.

Vendors

Selling agents’ records will provide details of ownership of vendors. Most cases will be straightforward, but potential problems may exist in relation to:

- sale of bobby calves, where records may be minimal and cash transactions are normal
- ownership of stock by dealers – agents and dealers may be hesitant about the true ownership and history of livestock; some agents deal in livestock themselves.

Buyers

In most auction systems, legal ownership changes upon the fall of the hammer. However, it is not unusual for some buyers to renege on a purchase if they subsequently discover something that they consider might disadvantage them.

An understanding of the relevant legislation is important, because some buyers may wish to renege on purchases when an EAD is confirmed or suspected.
Appendix 4 Guidelines for staff when an EAD is suspected in a saleyard

Before government staff assume control and quarantine premises or declare an infected premises

When an EAD occurs or is suspected, the only people who can give lawful directions to people, or impose lawful movement controls over animals, are those authorised under the state’s relevant animal diseases legislation, such as government veterinarians or gazetted inspectors of stock.

There may be a delay between when an EAD is suspected by a person working in a saleyard and when the government veterinarian or gazetted inspector of stock takes control of the situation and issues lawful directions. Under these circumstances, the saleyard manager needs to seek full cooperation from people entering and leaving the premises, especially livestock transporters.

In seeking cooperation, the manager should ensure that all people who leave without following advice (such as decontamination or, simply, awaiting the arrival of the government veterinarian) are aware that they could be subsequently liable for any costs from the spread of disease as a result of their negligence.

The manager should not delay in setting up facilities to allow people to leave the premises. If people choose to leave (and they may have good reasons for doing so), they will then be able to do so with less risk. Also, if the government veterinarian or gazetted inspector of stock decides that formal quarantine is warranted (sometimes requiring the declaration of the saleyard as an IP), preparations already made will assist movements of people off the premises.

The following procedures, which relate especially to suspected FMD, should be documented in saleyard response plans. An example is provided in the Australian Code of Practice for the Selling of Livestock.\(^\text{17}\)

Saleyards managers should:

- ensure that notes are made of the exact clinical signs they observe in the affected stock
- immediately call their state or territory government veterinarian or the Emergency Animal Disease Watch Hotline (1800 675 888), explaining what they can see
- compile a register of all people in attendance at the saleyard
- isolate the affected animals, to minimise exposure of any other animals or people to the affected stock until the government staff arrive
- cease loading any stock, and make every effort to ensure that transports do not leave the premises until the situation is clarified by a government veterinarian
- where transporters refuse to wait, encourage them to use the truck-wash facility to decontaminate their crates and assist them to do the job properly (including by providing disinfectant); request information on where they intend to go
- request that people who are wishing to move off the premises remain until approval is given

\(^{17}\) www.saleyards.info/public/pdf/Australian%20Code%20of%20Practice%2023%20Nov%202007.doc
• establish a decontamination point so that people who refuse to wait may decontaminate their skin and footwear
 – give each person a classification based on their contact, or suspected contact, with the affected stock
 – for people classified as low risk, provide decontamination at the exit point, with a request that they go home immediately, shower and wash clothing and footwear
 – for people classified as high risk, encourage them to shower and change on the premises and to bag their clothes for subsequent laundering
• advise any early leavers that they should not have contact with other livestock for a period of time recommended by the relevant Disease Strategy
• lock all exits other than the one through which people may be processed
• await the arrival of a diagnostic team (if one is dispatched by the CVO) to closely examine the animals and plan for providing the team with assistance with restraint and sample collection
• prepare a map of the saleyard to assist management of any response
• begin compiling a register of stock on the premises and their origin, and stock that have left and their transporter and destination
• identify a quarantine area that will provide a 100-metre buffer between affected animals and other animals in the saleyard, for use if the veterinarian requires animals to be further isolated
• restrict other animal movements; stock should be moved using as few people as possible, to minimise contact between people and affected animals.

When the premises is quarantined or declared an infected premises

Once a premises is declared an IP, almost all of its activity will be under the control of a government veterinarian or gazetted inspector of livestock under the relevant legislation. As a result of the quarantine, no animals, people, vehicles or things may enter or leave the saleyard without approval of the inspector. Police may be on hand to assist. During this period, the saleyard manager and staff will be requested to help with:

• padlocking or blocking all exits
• decontaminating people off the premises
• maintaining a register of people leaving the premises and their potential to contact susceptible livestock
• preventing the movement of animals and vehicles
• decontaminating vehicles
• decontaminating or confining dogs
• ensuring that any people who are hired to work on the premises do not live on a farm or come into contact with susceptible animals as part of their day-to-day activities
• providing roving patrols around the boundary
• staffing vehicle disinfection points
• collating records of animals that are present in the saleyard, as well as preliminary tracing information on movements from the saleyard, including
 – the origin and ownership of all stock in the saleyard
– vehicles and people that have had contact with the affected stock, and their movements
– stock that have left, and their transporters and destinations

• organising feed and water for detained stock
• informing all people present on the complex about how they can cooperate
• ensuring that all media enquiries are transferred to the relevant and designated LCC public relations officer
• planning for the destruction of livestock, so that advice can be given to the LCC Controller on the best methods for destruction as soon as the CVO authorises slaughter
• planning and undertaking the valuation process
• planning for the disposal of carcasses and product
• planning for cleaning and disinfection of the complex
• advising owners of any stock that are still on-farm not to send the stock to the saleyards
• advising stock transports that are loaded with stock in transit to the saleyard to pull over to the nearest rest area and await further instructions
• negotiating with other saleyards where in-transit stock caught in a standstill need to be unloaded and rested before the return journey
• tracing stock vehicles and people, based on a risk assessment undertaken on all movements; priority will be given to tracing movements that have the highest risk of spreading disease
• cleaning and disinfecting the saleyard to eliminate any possible source of the disease agent, without causing environmental damage and without further spreading the agent.
Appendix 5 Preparation before an EAD incident

Responsibilities of saleyard and government personnel

Responsibilities for preparations before an EAD incident are outlined below.

Saleyard ownership and management

- Develop and/or adhere to codes of practice that address reducing the risk and impact of a serious disease, including descriptions of:
 - saleyard location, saleyard construction, cleaning and maintenance, effluent disposal
 - frequency of sales, and use of premises for transit stock and other purposes
 - access for livestock vehicles and other vehicles
 - human access to saleyards and general ability to secure premises, if necessary
- Maintain accurate recording systems that enable rapid tracing of ownership and stock movements.
- Seek veterinary advice on sick and dead stock and on ensuring that the system for carcass disposal does not risk spreading disease.
- Prepare and maintain a map of saleyards and surrounds, indicating entry/exit points for livestock people and drainage systems.

Livestock agents and transport operators

- Be aware of:
 - the likely presenting signs for EADs
 - likely impacts of an EAD incident on the operation of the business
 - who to contact in the event of an EAD incident
 - the powers of the lead authorities, including for quarantine of livestock and vehicles, and the value of cooperation
 - the principles of movement control
 - the concepts of RAs and CAs and their specific impact
 - the importance of public perceptions about risk
 - the likelihood that any contact with IPs, DCPs or SPs will prevent subsequent contact with susceptible species for up to 7 days.
- Ensure that vehicle and personal hygiene are in good order to minimise the risk of spreading disease.
- Maintain good records of stock movements and sales, and be prepared to make them available at short notice.
Department of agriculture

- Maintain industry contact, including regular attendance at saleyards. The benefits of maintaining contact include the ability to:
 - network to keep abreast of industry practices
 - maintain and increase credibility with key industry people whose cooperation is essential in an EAD incident
 - maintain and increase industry awareness of potential EADs and likely responses.

- Participate in the development of codes of practice for the operation of saleyards to encourage adoption of precautions to reduce risk, such as:
 - construction and maintenance of facilities in an easily cleaned condition
 - regular cleaning of saleyards and surrounds
 - ensuring that effluent disposal presents no risk of spread of disease (endemic or exotic)
 - accurate record keeping in a form that allows rapid access to vital information, such as stock ownership and movements.

- Maintain contact with the state/territory environment protection authority and related authorities to ensure that effluent disposal solutions do not present disease transmission risks.

- Prepare draft role statements for key personnel, in consultation with saleyard management and livestock agents, and test them in training exercises.

- Prepare draft information leaflets for distribution in the event of an EAD incident in a saleyard.

- Maintain awareness of evolving policies, especially zoning and vaccination (in the case of FMD), and of the major mechanisms of spread for various diseases.

Workplace health and safety

All people who are involved in an EAD response in saleyards should be aware that some EADs can be transmitted from animals to humans.

The most significant EADs for human health are anthrax (cattle, sheep), brucellosis (cattle, goats), Rift Valley fever, rabies (most stock), Japanese encephalitis (pigs), swine vesicular disease (pigs) and vesicular stomatitis (cattle, horses, pigs).

The most significant EADs with regard to the potential for humans to spread the disease are FMD (cattle, sheep, goats) and swine influenza (pigs).

Saleyard managers should liaise with their state or territory government veterinary staff to ensure that a range of personal protective equipment and disinfectants is available for use if required, and include in their plans procedures to maintain stores of these items.
Appendix 6 Example of Saleyard Action Plan for a National Livestock Standstill

When a livestock standstill is declared by a government, all stock must stay where they are unless they are in transit. Most of those in transit will be required to return to their place of origin, but some may continue to their destination, including a saleyard.

All around Australia, saleyards will contain livestock that will not be allowed to move. Experience has shown that even saleyards that are quite remote from the first infected property are likely to have had exposure to the disease, because rapid movement of stock and stock transport vehicles occurs across the nation.

All saleyards should prepare for such an eventuality by preparing a Saleyard Action Plan. The following example was developed by Biosecurity Victoria in 2003. It is included here to give guidance to saleyard operators in all states and territories about how to prepare for a national livestock standstill in the event of an outbreak of FMD.
Saleyard Action Plan for a National Livestock Standstill

This action plan was created by the Victorian Department of Primary Industries (DPI) and launched at a Livestock Saleyards Association of Victoria (LSAV) meeting in June 2003. Minor style and formatting edits have been made for the purposes of this manual.

1. BACKGROUND
The Australian Productivity Commission has calculated the costs of a ‘short’ FMD outbreak at $3 billion. A multistate 12-month outbreak has been estimated to cost Australia $8–13 billion. Key beef and lamb markets would not reopen until at least 6 months after FMD was eradicated.

Speed is of crucial importance in controlling FMD. In the 2001 United Kingdom outbreak, FMD is thought to have been unrecognised for around 3 weeks. During this time, the disease spread extensively, mostly by movement of pigs and sheep. As a result, 2030 farms were infected and some 4.9 million sheep, 0.7 million cattle and 0.4 million pigs were slaughtered. The UK ‘Lessons Learned’ inquiry cites the need for ‘rapid deployment of resources and the importance of speed’ to minimise effects of a highly contagious disease such as FMD.

In the Victorian/Australian context, a Livestock Standstill Order would be imposed immediately a diagnosis of FMD was made anywhere in the nation. The standstill provides authorities with the time to assess disease risks and minimise the chances of spread through livestock trade and movement.

Rapid implementation of a livestock standstill will be a major challenge to the saleyard industry — saleyards themselves, producers, stock agents, transporters, local and state governments. Successful implementation of a standstill is vital to halt or slow the spread of disease. A Saleyard Livestock Standstill Plan will require the consideration, consultation and cooperation of all involved. The end point will be a written plan for each saleyard. The plan must be updated continuously, AT LEAST once a year.

If FMD is suspected or diagnosed in any susceptible animal at a saleyard, the saleyard may be designated as a suspect premises (SP), dangerous contact premises (DCP) or infected premises (IP). In this event, quarantine will be imposed on all stock at the saleyard and, in the case of DCPs and IPs, compulsory slaughter will follow. Saleyard Livestock Standstill Plans are to assume that the saleyard is not an SP, DCP or IP.

2. AIM
The purpose of this proforma is to provide saleyard operators with the background knowledge and framework, so that each saleyard can create its own Saleyard Livestock Standstill Plan and implement the plan if a Livestock Standstill Order is announced, especially on a sale day. If a Livestock Standstill Order is announced before a sale day, the action plan should detail how each saleyard will go about informing stock agents, producers, transporters and buyers of the sale’s cancellation.

3. LEGISLATION
The Minister for Agriculture will make the Livestock Standstill Order under the *Livestock Disease Control Act 1994*. The Order will usually be invoked in Victoria following confirmation of FMD in any other state as part of a National Livestock Standstill. The provisions of the Order will be implemented for an initial period of 72 hours. Easing, lifting or extending the Order will be based on risk assessment and the nature of the disease outbreak.

The Order only applies to FMD-susceptible species such as cattle, sheep, goats, deer, pigs and alpaca. It will not apply to nonsusceptible species, such as horses or poultry unless they have been in direct contact with infected animals and could carry the virus (in this case they will be classed as ‘Specified Livestock’).

4. NOTIFICATION AND COMMUNICATIONS
The chief veterinary officer (CVO) of Victoria will inform the LSAV of a Livestock Standstill Order by electronic means (facsimile and/or email). The order will be accompanied by an explanatory information package giving arrangements, for example, for stock in transit. The LSAV will be requested to notify all saleyards immediately by forwarding electronic copies of the order and package. All other affected industry...
organisations (eg abattoirs, Victorian Farmers Federation, United Dairyfarmers of Victoria, Livestock Transporters Association of Victoria) and local government will be informed officially, usually by facsimile or by email.

In addition, there will be immediate and widespread dissemination of the order by national and local media — principally radio and television, backed up by the national and rural press. With a sale in progress, a saleyard official or a DPI officer will read a prepared statement informing all present of the provisions of the Livestock Standstill Order and its immediate imposition on all susceptible livestock.

5. SALEYARD RISK ASSESSMENT
The purpose of the Livestock Standstill Order is to allow DPI time to assess the risk that any animal within a saleyard may have been exposed to FMD virus. For this to be achieved, DPI staff will require details of the ownership and origin of each consignment. Stock agents assisted by the saleyard management will be expected to provide DPI with lists of number and class of livestock by vendor and their Property Identification Codes (PICs) and the name of transporters.

6. COMPENSATION ISSUES
If stock are destroyed for disease control purposes, compensation is payable under the cost-sharing arrangements between the Australian Government, state and territory governments, and industry. The issue of compensation for stock caught up in a livestock standstill but not destroyed is unresolved. This grey area includes things like costs of feeding, loss of body weight, lost marketing opportunities and many other issues. However, the issue is recognised at the highest levels of the Australian and state/territory governments.

7. CONTACT LISTS
The Saleyard Livestock Standstill Plan should include lists of the names and contact details of all parties likely to be involved — for example, stock agents, vets, feed suppliers, transporters, local government and DPI. Contact details for the closest abattoirs, renderers and knackeries may be required urgently — for example, if a group of bobby calves are released by permit for urgent welfare slaughter. See Appendix A for a Contact List proforma.

8. REFERENCE MATERIAL
AUSVETPLAN Enterprise Manual: Saleyards and Transport
DRAFT ACTION PLAN FOR SALEYARD LIVESTOCK STANDSTILL

Prepared by the

.. LIVESTOCK EXCHANGE/SALEYARD

Dated/........./20......

1. Business details

Registered name of saleyard

Postal address

Postcode

Physical address/location

Office phone number

After-hours phone number

Manager’s mobile

Facsimile number

Email address

ABN

For each heading below, consider the following for inclusion in your plan:

- **What** needs to be done, what should be recorded?
- **Why** is a task necessary? (Understanding should result in better compliance.)
- **Who** is to do it (the person or responsible position — Saleyard Manager, DPI official)?
- **How** is the task to be performed (the method)?
- **When** are they to do it (sequence, logical order, degree of urgency)?
- **Where** is the task to be performed?

2. Saleyard staff and command

- What — record the management structure, who supervises/informs who, list of employees by position and their contact details.

18 Please lodge a copy of your Saleyard Livestock Standstill Plan with the Livestock Saleyards Association of Victoria.
• Why — so that all involved in implementing a Saleyard Livestock Standstill Plan (SLSP) can be informed of their role(s) ahead of time.
• Who — the person responsible for writing the plan.
• How — staff structure diagram, staff list with positions and duties.
• When — when plan is drafted, before any emergency.
• Where — to be included in the written plan.

3. Important saleyard contacts
• What — create a detailed list of important contacts with all relevant details.
• Why — to know how and who to contact in an emergency.
• Who — the person responsible for writing the plan.
• How — fill in all details as per Appendix A.
• When — when plan is drafted, before any emergency.
• Where — to be included in the written plan in Appendix A.

4. Livestock Standstill Order released on a non-sale day
• What — the Order will have been received by fax or email. All parties involved with the saleyard must be informed of the provisions of the Order as soon and as effectively as possible.
• Why — to prevent stock leaving their properties of origin and potentially being exposed to, or spreading, disease at a saleyard; to save producers, transporters and saleyards financial losses.
• Who — the saleyard manager will be responsible for informing stock agents. Stock agents must inform their clients and transporters. The Order will also be widely publicised on the electronic media — radio and television — backed up by the print media.
• How — by electronic means (telephone, facsimile or email).
• When — as soon as the Livestock Standstill Order is received.
• Where — process is to be managed from the offices of the saleyard manager and stock agents.

5. Announcing a Livestock Standstill Order and provisions for sales in progress
• What — the Order will have been received by fax or email. All parties involved with the saleyard must be informed of the provisions of the Order as soon and as effectively as possible.
• Why — to minimise any unauthorised livestock movements with attendant risks of disease transmission.
• Who — the saleyard manager or a DPI official is responsible for announcing the provisions of the Order.
• How — the provisions of the Order are to be announced to all present at the saleyard, preferably over a public address system. (Appendix B). A handout and copy of the order prepared by DPI is to be posted in prominent places and distributed to all present.
• When — immediately the Livestock Standstill Order is received.
• Where — within the saleyard premises, including parking, cafeteria and wash-down areas.

6. Securing the saleyard
• What — preventing the unauthorised movement of livestock and loaded transports into or out of the saleyard premises.
• Why — to prevent unauthorised entry/exit with attendant risks of disease transmission.
• Who — DPI officers, the saleyard manager, assisted by saleyard staff and Victoria Police.
• How — close and lock gates, block roads with vehicles, barriers or boomgates.
• When — immediately the Order is received.
• Where — will be dictated by saleyard layout; access points to be identified in plan. (Note: please attach a map of the saleyard and associated roads, fences, boundaries and drainage lines to this plan — see Appendix C.)

7. Assisting DPI
• What — DPI officers will require considerable assistance (for example, details of the ownership and origin of each consignment, the name of the transporter, a list of number and class of livestock by vendor and their Property Identification Codes [PICs]). Stock agents, assisted by saleyard management, will be
expected to assist DPI to obtain this information as soon as possible. A proforma for the information required by DPI is presented in Appendix D.

- Why — for the DPI risk assessment, it is crucial that DPI staff know where each consignment has come from and how and who has transported each consignment. Where consignments have gone to is vital for trace-forward purposes.
- Who — the saleyard manager should assign a person with the clerical knowledge and skills to work with stock agents to provide DPI with the information required.
- How — work with stock agents to prepare lists of the information requested by DPI (see Appendix D).
- When — as soon as possible after announcement of the Livestock Standstill Order.
- Where — by hand delivery to DPI at the saleyard or by electronic means to a fax or email address provided by DPI.

8. People issues

- What — there are no laws restricting movement of persons (unless infection is actually suspected in saleyards). However, advice to all present on precautions for personal biosecurity will be provided by DPI (see Appendix B).
- Why — to minimise risks that any person will have footwear, clothing or a vehicle contaminated by potentially infectious material.
- Who — saleyard manager to distribute the information provided in Appendix B.
- How — public announcement backed up by pre-prepared paper handout.
- When — immediately the Livestock Standstill Order is received.
- Where — within the saleyard premises, including parking, cafeteria and wash-down areas.

9. Livestock transports

- What — loaded transports still at saleyards must be unloaded; stock must be confined. Recommendations for cleansing all unloaded transports before they leave saleyard are given in Appendix B. A separate parking lot should be provided for personal (nontransport) vehicles.
- Why — to prevent loaded transports leaving, to minimise risks of transports spreading infection.
- Who — saleyard manager/DPI to announce, truck operators to cleanse trucks.
- How — public announcement backed up by pre-prepared paper handout. Note: There is no law preventing the movement of transporters in the situation where FMD is diagnosed in another state, but it is in the interests of the industry that all transports, clothing and footwear be cleansed before leaving the saleyard.
- When — immediately the Livestock Standstill Order is received.
- Where — within confines of saleyard, parking lot, wash-down bay.

10. Livestock already trucked from saleyards (in transit to destination(s))

- What — livestock movements that commenced before the Livestock Standstill Order coming into effect may be completed, provided completion is within 12 hours. DPI will specify procedures for loaded trucks in transit and perform risk assessments on a case-by-case basis.
- Why — to minimise the risk of disease spread; to record possible traces.
- Who — stock agents, assisted by saleyard manager and staff, to contact and inform drivers, to record all details and to pass on to DPI for risk assessment and possible surveillance visit. Information required by DPI can be listed (see Appendix D).
- How — refer to Appendix A and/or contact trucking companies for drivers’ details, destination(s) and mobile phone numbers.
- When — immediately the Livestock Standstill Order is received.
- Where — managed from the saleyard and agents’ offices. Information recorded in Appendix D.

11. Livestock in saleyards

11.1 Holding arrangements (timeframe)

- What — livestock are to be held in the yards for the minimum term specified in the Order.
- Why — to minimise risks of disease spread while DPI assesses risks.
- Who — saleyard management in association with DPI manages the holding operation.
- How — livestock to be held in secure pens or saleyard paddocks.
- When — from the time the Livestock Standstill Order is received and announced. Note: Individual consignments may be released under permit before the expiry of the Order.
• Where — on the saleyard premises.

11.2 Feeding and watering arrangements
• What — stock must have access to drinkable water at all times. Fodder (hay) will have to be brought in on the second day of confinement.
• Bobby calves must be fed within 24 hours of leaving their home farm. This will be a particular challenge; humane destruction may be required if they cannot be fed within this time.
• Why — to meet animal welfare requirements and to preserve, as far as possible, the commercial value of the stock.
• Who — feed merchants and contractors will need to be tasked with supplying fodder. The issue of ‘who pays’ is unresolved at this time but is under discussion at high levels of government.
• How — fodder, usually hay, will be distributed to held stock in amounts determined by the number and class of stock.
• When — fodder is to be supplied from the second day after imposition of the Livestock Standstill Order.
• Where — stock are to be fed in their pens.

11.3 Security
• What — stock must be prevented from leaving the confines of the saleyards until termination of the Order or until official DPI approval or a permit allows their movement.
• Why — to minimise risks of disease spread and to allow time for DPI risk assessments.
• Who — security contractor to be supervised by DPI official.
• How — security contractor to provide 24-hour coverage to ensure no unauthorised livestock movements occur.
• When — as soon as possible after announcement of the Livestock Standstill Order until the Order is revoked or expires. Individual consignments may be released with a permit issued by a government veterinarian or gazetted inspector of stock.
• Where — security must be maintained at the checkpoints (locked gates or blocked roads).

11.4 Release of livestock from saleyards
• What — stock will be released from saleyards when official approval from DPI is given. This may be by individual permit issued by a government veterinarian or gazetted inspector of stock or by expiry of the Order.
• Why — to allow movement to properties or meat works after completion of risk assessment.
• Who — DPI will publicise the expiry date of the Order and/or provide individual owners with permits.
• How — release of stock ahead of expiry of the Order will be by written DPI permit. Expiry of the Order will be widely publicised on radio and television and in local newspapers.
• When — as soon as the risk assessment process is complete.
• Where — permits will be provided on a risk-assessed basis to owners and transporters.
Appendix A

SALEYARD LIVESTOCK STANDSTILL ORDER — CONTACT LIST

This list should include full contact details for the organisations, businesses and persons listed. It must be updated not less than once per year.

<table>
<thead>
<tr>
<th>Organisation</th>
<th>Contact person</th>
<th>Phone</th>
<th>Facsimile</th>
<th>Mobile</th>
<th>Email address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abattoir — 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abattoir — 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abattoir - 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPI office — nearest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPI District Veterinary Officer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPI Senior Veterinary Officer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPI Chief Veterinary Officer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPA nearest office</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed agent — 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed agent — 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed agent — 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knackery — nearest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local government</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neighbour — 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neighbour — 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neighbour — 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renderer — nearest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stock agent — 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stock agent — 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stock agent — 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport company — 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport company — 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport company — 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worker 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worker 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worker 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Victoria Police</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix B

DRAFT ANNOUNCEMENT AND PUBLICITY FOR A SALEYARD LIVESTOCK STANDSTILL ORDER

When a livestock standstill order is imposed on a sale day, this statement should be read out by the saleyard manager or by a DPI officer. It should be posted with a copy of the Livestock Standstill Order at multiple locations around the saleyard.

‘This notice is to inform all interested parties that a Livestock Standstill Order was received from the Chief Veterinary Officer of Victoria at(time) on/........../20.......(date).

The Order is signed by the Minister of Agriculture(insert name) at(time) on/........../20.......(date). The order is issued under Section 29 of Victoria’s Livestock Disease Control Act 1994.

The Order has been issued following the diagnosis of foot-and-mouth disease (FMD) in(insert state).

The purpose of the Order is to provide authorities with the time to assess disease risks and minimise the chances of spread through livestock trade and movements. DPI will be working closely with all parties, particularly agents, to determine the origin of all stock yarded and whether any present a risk of spreading FMD in Victoria.

The provisions of the Order relevant to this saleyard are:

1. That the whole state of Victoria is declared a control area in respect to the exotic disease foot-and-mouth disease.
2. Movement of all susceptible livestock — that is, cattle, sheep, goats, deer, pigs or alpaca — to or from any premises within Victoria is prohibited unless in accordance with a written permit issued by a government veterinarian or gazetted inspector of stock.
3. No susceptible livestock are to enter or leave this saleyard, with immediate effect, unless in accordance with a permit issued by a government veterinarian or gazetted inspector of stock.
4. No shows, sales or gatherings of susceptible livestock are to be held for the duration of this Order.
5. All susceptible livestock are to be held at this saleyard until expiry of the Livestock Standstill Order on/........../20.......(insert date) or until a permit is issued for the entry or release of any consignment by a government veterinarian or gazetted inspector of stock.
6. The Order may, if necessary, be extended for a further period.
7. DPI and saleyard management seek the cooperation of all persons — livestock owners, transporters, agents and buyers — to implement the provisions of this standstill.’

The following advice is given to all people present within the premises of this saleyard:

1. All persons are advised that before leaving this saleyard, they should ensure that their footwear and clothing are not contaminated by dung. A pressure hose should be used to cleanse private vehicles contaminated by animal manure before leaving these premises. Special attention should be directed at tyres and the undersides of mudguards and the bottom of trays. Roll the vehicle forward slightly to cleanse the underside of tyres. A pressure hose will be made available at
2. All persons are advised to shower and to change their footwear and all clothing at their first opportunity BEFORE having any contact with livestock. Footwear should be disinfected and clothes laundered in a hot wash.

3. Transport operators are advised to follow the personal recommendations listed above. In addition, they are advised to wash their truck with a pressure hose before leaving these premises. Particular attention should be paid to the tray, tyres and undersides of mudguards. Roll the vehicle forward slightly to cleanse the underside of tyres. After pressure hosing, these should be free of visible dung. Mats from the interior should be hosed down and be free of dung. A pressure hose is available at the truck wash.

4. All livestock have or will have access to drinking water today. Contractors will be hired to feed livestock as soon as possible. Owners and buyers are asked not to return to this saleyard until their stock are released.
Appendix C

PLAN OF SALEYARD

Please append a plan of your saleyard. The plan should show pens, paddocks, roads, laneways, buildings, drainage and effluent ponds, parking areas, fences and boundaries. The plan should indicate where roadblocks would be set up to restrict access to the saleyards. If neighbouring properties ever run susceptible species (cattle, sheep, goats, pigs, deer, alpaca), they should be indicated on the plan as ‘grazing property’, with the name and contact details of the owner, lessor or responsible person listed in the contact list (Appendix A).
Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal byproducts</td>
<td>Products of animal origin that are not for consumption but are destined for industrial use (eg hides and skins, fur, wool, hair, feathers, hooves, bones, fertiliser).</td>
</tr>
<tr>
<td>Animal Health Committee</td>
<td>A committee whose members are the Australian and state and territory CVOs, the Director of the CSIRO Australian Animal Health Laboratory, and the Director of Environmental Biosecurity in the Australian Government Department of Sustainability, Environment, Water, Population and Communities. The committee provides advice to SCoPI on animal health matters, focusing on technical issues and regulatory policy (formerly called the Veterinary Committee). See also Standing Council on Primary Industries</td>
</tr>
<tr>
<td>Animal products</td>
<td>Meat, meat products and other products of animal origin (eg eggs, milk) for human consumption or for use in animal feedstuffs.</td>
</tr>
<tr>
<td>Assessed negative (AN)</td>
<td>A qualifier applied to a premises previously defined as a dangerous contact premises, suspect premises, trace premises or at-risk premises that has been cleared of suspicion at the time of designation, and is subject to the procedures and restrictions appropriate to the area in which it is located. (Note: AN is a qualifier to document progress in the response and in the proof-of-freedom phase. It is not to be used at the same level as the other premises classifications.)</td>
</tr>
<tr>
<td>At-risk premises (ARP)</td>
<td>A premises in a restricted area that contains a susceptible animal(s) but is considered at the time of designation not to be an infected premises, dangerous contact premises, suspect premises or trace premises. The animal(s) on such a premises are subject to procedures such as heightened surveillance and movement restrictions that are applicable in the restricted area.</td>
</tr>
<tr>
<td>Australian Chief Veterinary Officer</td>
<td>The nominated senior veterinarian in the Australian Government Department of Agriculture, Fisheries and Forestry who manages international animal health commitments and the Australian Government’s response to an animal disease outbreak. See also Chief veterinary officer</td>
</tr>
<tr>
<td>AUSVETPLAN</td>
<td>Australian Veterinary Emergency Plan. A series of technical response plans that describe the proposed Australian approach to an emergency animal disease incident. The documents provide guidance based on sound analysis, linking policy, strategies, implementation, coordination and emergency-management plans.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Chief veterinary officer (CVO)</td>
<td>The senior veterinarian of the animal health authority in each jurisdiction (national, state or territory) who has responsibility for animal disease control in that jurisdiction. See also Australian Chief Veterinary Officer</td>
</tr>
<tr>
<td>Compensation</td>
<td>The sum of money paid by government to an owner for livestock or property that are destroyed for the purpose of eradication or prevention of the spread of an emergency animal disease, and livestock that have died of the emergency animal disease. See also Cost-sharing arrangements, Emergency Animal Disease Response Agreement</td>
</tr>
<tr>
<td>Consultative Committee on Emergency Animal Diseases (CCEAD)</td>
<td>The key technical coordinating body for animal health emergencies. Members are state and territory CVOs, representatives of CSIRO-AAHL and the relevant industries, and the Australian CVO as chair.</td>
</tr>
<tr>
<td>Control area (CA)</td>
<td>A declared area in which the conditions applying are of lesser intensity than those in a restricted area (the limits of a control area and the conditions applying to it can be varied during an outbreak according to need).</td>
</tr>
<tr>
<td>Cost-sharing arrangements</td>
<td>Arrangements agreed between governments (national and state/territory) and livestock industries for sharing the costs of emergency animal disease responses. See also Compensation, Emergency Animal Disease Response Agreement</td>
</tr>
<tr>
<td>Dangerous contact animal</td>
<td>A susceptible animal that has been designated as being exposed to other infected animals or potentially infectious products following tracing and epidemiological investigation.</td>
</tr>
<tr>
<td>Dangerous contact premises</td>
<td>A premises that may or may not contain a susceptible animal(s), including those not showing clinical signs, but that, following a risk assessment, is considered highly likely to contain an infected animal(s) or contaminated animal products, wastes or things, which present an unacceptable risk to the response if the risk is not addressed.</td>
</tr>
<tr>
<td>Declared area</td>
<td>A defined tract of land that is subjected to disease control restrictions under emergency animal disease legislation. Types of declared areas include restricted area, control area, infected premises, dangerous contact premises and suspect premises.</td>
</tr>
<tr>
<td>Decontamination</td>
<td>Includes all stages of cleaning and disinfection.</td>
</tr>
<tr>
<td>Depopulation</td>
<td>The removal of a host population from a particular area to control or prevent the spread of disease.</td>
</tr>
<tr>
<td>Destroy (animals)</td>
<td>To kill animals humanely.</td>
</tr>
<tr>
<td>Discharges</td>
<td>Intentional or unintentional emissions of gas, liquid or solid matter from a premises, other than products or byproducts.</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>Disease agent</td>
<td>A general term for a transmissible organism or other factor that causes an infectious disease.</td>
</tr>
<tr>
<td>Disease Watch Hotline</td>
<td>24-hour freecall service for reporting suspected incidences of exotic diseases – 1800 675 888.</td>
</tr>
<tr>
<td>Disinfectant</td>
<td>A chemical used to destroy disease agents outside a living animal.</td>
</tr>
<tr>
<td>Disinfection</td>
<td>The application, after thorough cleansing, of procedures intended to destroy the infectious or parasitic agents of animal diseases, including zoonoses; applies to premises, vehicles and different objects that may have been directly or indirectly contaminated.</td>
</tr>
<tr>
<td>Disposal</td>
<td>Sanitary removal of animal carcasses, animal products, materials and wastes by burial, burning or some other process, to prevent the spread of disease.</td>
</tr>
<tr>
<td>Effluent</td>
<td>See Discharges</td>
</tr>
<tr>
<td>Emergency animal disease (EAD)</td>
<td>A disease that is (a) exotic to Australia or (b) a variant of an endemic disease or (c) a serious infectious disease of unknown or uncertain cause or (d) a severe outbreak of a known endemic disease, and that is considered to be of national significance with serious social or trade implications. See also Endemic animal disease, Exotic animal disease</td>
</tr>
<tr>
<td>Emergency Animal Disease Response Agreement</td>
<td>Agreement between the Australian and state/territory governments and livestock industries on the management of emergency animal disease responses. Provisions include participatory decision making, risk management, cost sharing, the use of appropriately trained personnel and existing standards such as AUSVETPLAN. See also Compensation, Cost-sharing arrangements</td>
</tr>
<tr>
<td>Endemic animal disease</td>
<td>A disease affecting animals (which may include humans) that is known to occur in Australia. See also Emergency animal disease, Exotic animal disease</td>
</tr>
<tr>
<td>Enterprise</td>
<td>See Risk enterprise</td>
</tr>
<tr>
<td>Epidemiological investigation</td>
<td>An investigation to identify and qualify the risk factors associated with the disease. See also Veterinary investigation</td>
</tr>
<tr>
<td>Exotic animal disease</td>
<td>A disease affecting animals (which may include humans) that does not normally occur in Australia. See also Emergency animal disease, Endemic animal disease</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Exotic fauna/feral animals</td>
<td>See Wild animals</td>
</tr>
<tr>
<td>Fomites</td>
<td>Inanimate objects (eg boots, clothing, equipment, instruments, vehicles, crates, packaging) that can carry an infectious disease agent and may spread the disease through mechanical transmission.</td>
</tr>
<tr>
<td>In-contact animals</td>
<td>Animals that have had close contact with infected animals, such as noninfected animals in the same group as infected animals.</td>
</tr>
<tr>
<td>Incubation period</td>
<td>The period that elapses between the introduction of the pathogen into the animal and the first clinical signs of the disease.</td>
</tr>
<tr>
<td>Index case</td>
<td>The first case of the disease to be diagnosed in a disease outbreak. See also Index property</td>
</tr>
<tr>
<td>Index property</td>
<td>The property on which the index case is found. See also Index case</td>
</tr>
<tr>
<td>Infected premises</td>
<td>A defined area (which may be all or part of a property) in which an emergency disease meeting the case definition exists or is believed to exist, or in which the causative agent of that emergency disease exists or is believed to exist.</td>
</tr>
<tr>
<td>LCC Controller</td>
<td>The veterinary officer nominated by the CVO to manage the local control centre.</td>
</tr>
<tr>
<td>Local control centre (LCC)</td>
<td>An emergency operations centre responsible for the command and control of field operations in a defined area.</td>
</tr>
<tr>
<td>Monitoring</td>
<td>Routine collection of data for assessing the health status of a population. See also Surveillance</td>
</tr>
<tr>
<td>Movement control</td>
<td>Restrictions placed on the movement of animals, people and other things to prevent the spread of disease.</td>
</tr>
<tr>
<td>Myiasis</td>
<td>Parasitism of animal tissues by the larvae of flies.</td>
</tr>
<tr>
<td>National management group (NMG)</td>
<td>A group established to approve (or not approve) the invoking of cost sharing under the Emergency Animal Disease Response Agreement. NMG members are the Secretary of the Australian Government Department of Agriculture, Fisheries and Forestry as chair, the chief executive officers of the state and territory government parties, and the president (or analogous officer) of each of the relevant industry parties.</td>
</tr>
<tr>
<td>Native wildlife</td>
<td>See Wild animals</td>
</tr>
</tbody>
</table>
OIE Terrestrial Code
OIE *Terrestrial Animal Health Code*. Describes standards for safe international trade in animals and animal products. Revised annually and published on the internet at: www.oie.int/international-standard-setting/terrestrial-code/access-online

OIE Terrestrial Manual

Operational procedures
Detailed instructions for carrying out specific disease control activities, such as disposal, destruction, decontamination and valuation.

Operations
The activities necessary to give effect to a disease control strategy.

Owner
A person responsible for a premises (includes an agent of the owner, such as a manager or other controlling officer).

Premises
A tract of land including its buildings, or a separate farm or facility that is maintained by a single set of services and personnel.

Premises of relevance (POR)

Prevalence
The proportion (or percentage) of animals in a particular population affected by a particular disease (or infection or positive antibody titre) at a given point in time.

Product
The edible material produced at an establishment.
See Animal products

Quarantine
Legal restrictions imposed on a place or a tract of land by the serving of a notice limiting access or egress of specified animals, persons or things.

Rendering
Processing by heat to inactivate infective agents. Rendered material may be used in various products according to particular disease circumstances.

Restricted area (RA)
A relatively small declared area (compared with a control area) around an infected premises that is subject to intense surveillance and movement controls.
Risk enterprise

A defined livestock or related enterprise that is potentially a major source of infection for many other premises. Includes intensive piggeries, feedlots, abattoirs, knackeries, saleyards, calf scales, milk factories, tanneries, skin sheds, game meat establishments, cold stores, artificial insemination centres, veterinary laboratories and hospitals, road and rail freight depots, showgrounds, field days, weighbridges, garbage depots.

Sensitivity

The proportion of truly positive units that are correctly identified as positive by a test.
See also Specificity

Sentinel animal

An animal of known health status that is monitored to detect the presence of a specific disease agent.

Serotype

A subgroup of microorganisms identified by the antigens carried (as determined by a serology test).

Specificity

The proportion of truly negative units that are correctly identified as negative by a test.
See also Sensitivity

Stamping out

The strategy of eliminating infection from premises through the destruction of animals in accordance with the particular AUSVETPLAN manual, and in a manner that permits appropriate disposal of carcasses and decontamination of the site.

Standing Council on Primary Industries (SCoPI)

The council of Australian national, state and territory and New Zealand ministers of agriculture that sets Australian and New Zealand agricultural policy (formerly the Primary Industries Ministerial Council).
See also Animal Health Committee

State or territory control centre

The emergency operations centre that directs the disease control operations to be undertaken in that state or territory.

Strategy

The principles on which control of a disease is based.

Surveillance

A systematic program of investigation designed to establish the presence, extent or absence of a disease, or of infection or contamination with the causative organism. It includes the examination of animals for clinical signs, antibodies or the causative organism.

Susceptible animals

Animals that can be infected with a particular disease.
Suspect animal
An animal that may have been exposed to an emergency disease such that its quarantine and intensive surveillance, but not pre-emptive slaughter, is warranted.

or
An animal not known to have been exposed to a disease agent but showing clinical signs requiring differential diagnosis.

Suspect premises (SP)
Temporary classification of a premises that contains a susceptible animal(s) not known to have been exposed to the disease agent but showing clinical signs that require investigation.

Trace premises (TP)
Temporary classification of a premises that contains a susceptible animal(s) that tracing indicates may have been exposed to an infected animal(s), or contaminated animal products, wastes or things, and that requires investigation.

Tracing
The process of locating animals, persons or other items that may be implicated in the spread of disease, so that appropriate action can be taken.

Unknown status premises (UP)
A premises that has been identified as having an unknown animal status.

Vaccination
Inoculation of individuals with a vaccine to provide active immunity.

Vaccine
A substance used to stimulate immunity against one or several disease-causing agents to provide protection or to reduce the effects of the disease. A vaccine is prepared from the causative agent of a disease, its products, or a synthetic substitute, which is treated to act as an antigen without inducing the disease.

- attenuated
A vaccine prepared from infective or ‘live’ microbes that are less pathogenic but retain their ability to induce protective immunity.

- inactivated
A vaccine prepared from a virus that has been inactivated ('killed') by chemical or physical treatment.

- recombinant
A vaccine produced from a virus that has been genetically engineered to contain only selected genes, including those causing the immunogenic effect.

Vector
A living organism (frequently an arthropod) that transmits an infectious agent from one host to another. A biological vector is one in which the infectious agent must develop or multiply before becoming infective to a recipient host. A mechanical vector is one that transmits an infectious agent from one host to another but is not essential to the life cycle of the agent.
<table>
<thead>
<tr>
<th>Veterinary investigation</th>
<th>An investigation of the diagnosis, pathology and epidemiology of the disease. See also Epidemiological investigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild animals</td>
<td></td>
</tr>
<tr>
<td>- native wildlife</td>
<td>Animals that are indigenous to Australia and may be susceptible to emergency animal diseases (eg bats, dingoes, marsupials).</td>
</tr>
<tr>
<td>- feral animals</td>
<td>Animals of domestic species that are not confined or under control (eg cats, horses, pigs).</td>
</tr>
<tr>
<td>- exotic fauna</td>
<td>Nondomestic animal species that are not indigenous to Australia (eg foxes).</td>
</tr>
<tr>
<td>Zero susceptible stock premises (ZP)</td>
<td></td>
</tr>
<tr>
<td>Zoning</td>
<td>The process of defining, implementing and maintaining a disease-free or infected area in accordance with OIE guidelines, based on geopolitical and/or physical boundaries and surveillance, in order to facilitate disease control and/or trade.</td>
</tr>
<tr>
<td>Zoonosis</td>
<td>A disease of animals that can be transmitted to humans.</td>
</tr>
</tbody>
</table>
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAWS</td>
<td>Australian Animal Welfare Strategy</td>
</tr>
<tr>
<td>AN</td>
<td>assessed negative</td>
</tr>
<tr>
<td>ARP</td>
<td>at-risk premises</td>
</tr>
<tr>
<td>AUSVETPLAN</td>
<td>Australian Veterinary Emergency Plan</td>
</tr>
<tr>
<td>BSE</td>
<td>bovine spongiform encephalopathy</td>
</tr>
<tr>
<td>CA</td>
<td>control area</td>
</tr>
<tr>
<td>CCEAD</td>
<td>Consultative Committee on Emergency Animal Diseases</td>
</tr>
<tr>
<td>CSIRO</td>
<td>Commonwealth Scientific and Industrial Research Organisation</td>
</tr>
<tr>
<td>CVO</td>
<td>chief veterinary officer</td>
</tr>
<tr>
<td>DAFF</td>
<td>Australian Government Department of Agriculture, Fisheries and Forestry</td>
</tr>
<tr>
<td>DCP</td>
<td>dangerous contact premises</td>
</tr>
<tr>
<td>EAD</td>
<td>emergency animal disease</td>
</tr>
<tr>
<td>EADRA</td>
<td>Emergency Animal Disease Response Agreement</td>
</tr>
<tr>
<td>FMD</td>
<td>foot-and-mouth disease</td>
</tr>
<tr>
<td>ILO</td>
<td>industry liaison officer</td>
</tr>
<tr>
<td>IP</td>
<td>infected premises</td>
</tr>
<tr>
<td>LCC</td>
<td>local control centre</td>
</tr>
<tr>
<td>NLIS</td>
<td>National Livestock Identification System</td>
</tr>
<tr>
<td>NMG</td>
<td>national management group</td>
</tr>
<tr>
<td>OA</td>
<td>outside area</td>
</tr>
<tr>
<td>OIE</td>
<td>World Organisation for Animal Health</td>
</tr>
<tr>
<td>POR</td>
<td>premises of relevance</td>
</tr>
<tr>
<td>RA</td>
<td>restricted area</td>
</tr>
<tr>
<td>SCC</td>
<td>state or territory control centre</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>SP</td>
<td>suspect premises</td>
</tr>
<tr>
<td>TP</td>
<td>trace premises</td>
</tr>
</tbody>
</table>
References

OIE publications

Further reading

Individual AUSVETPLAN Disease Strategies

